High Birefringence and Negative Dispersion Effect of Hybrid-Core Photonic Crystal Fiber

Article Preview

Abstract:

A novel type of hybrid-core photonic crystal fiber is proposed, whose core is composed of center-directionally decrescent air holes arrayed as pentagonal and an octagonal structure. Characteristics of the proposed PCF are analyzed theoretically by using all vector finite element method (V-FEM). Results show that high-birefringence and negative dispersion are obtained over the wavelength range from 0.8µm to 1.8µm, and the maximum of birefringence reaches 1.36×10-2 and negative dispersion achieves -600 ps•nm-1•km-1~-60 ps•nm-1•km-1, which will fulfill the requirement of high-birefringence polarization maintaining fiber fabricating and wideband dispersion compensating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

599-603

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. S. J. Russell, Photonic-crystal fibers, J. Lightwave Technology. 2006., 24: p.4729.

Google Scholar

[2] I. Razdobreev, H. EI. Hamzaoui, L. Bigot, V. Arion, G. Bouwmans, A. Le Rouge, and M. Bouazaoui, Optical properties of Bismuth-doped silica core photonic crystal fiber, Optics Express. 2010, 18: pp.19479-19484.

DOI: 10.1364/oe.18.019479

Google Scholar

[3] C. Kerbage, B.J. Eggleton, Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. Optics Express. 2002, 10: p.246–55.

DOI: 10.1364/oe.10.000246

Google Scholar

[4] H. Ademgil, S. Haxha, Ultrahigh-birefringent bending-insensitive nonlinear photonic crystal fiber with low losses. Quantum Electronics. 2009, 45: pp.351-358.

DOI: 10.1109/jqe.2009.2013214

Google Scholar

[5] J.Y. Wang, M. Gao, C. Jiang, Design and parametric amplification analysis of dispersion-flat photonic crystal fibers. Chinese Optics Letters. 2005, 3: p.380–382.

Google Scholar

[6] C. Kerbage, B. J. Eggleton, P. S. Westbrook, R. S. Windeler, Experimental and scalar beam propagation analysis of an air–silica microstructure fiber. Optics Express. 2000, 7: pp.113-123.

DOI: 10.1364/oe.7.000113

Google Scholar

[7] T. R. Gong , F. P. Yan, L. Wang , Y. F. Li , P. Liu , S. S. Jian, Analysis of Properties of High Birefringence Photonic Crystal Fibers. Chinese J . Lasers. 2008, 35: pp.559-562 (in Chinese).

DOI: 10.3788/cjl20083504.0559

Google Scholar

[8] H. L. Wang, C. Wang, Y. X. Leng, Z. Z. Xu,L. T. Hou, High energy and long pulse generation with high-birefringence photonic crystal fibre and laser-diode pumped regenerative amplifier. Chin Phys B. 2010, 19: pp.342-346.

DOI: 10.1088/1674-1056/19/5/054212

Google Scholar

[9] H. Chi, Q. J. Zeng, C. Jiang, Photonic crystal fiber: theory, applications and recent progress. Journal of Optoelectronics·Laser. 2002, 13: pp.534-537.

Google Scholar

[10] Y. N. Zhang, R. C. Miao, L. Y. Ren, H. Y. Wang, L. L. Wang, W. Zhao, Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre. Chinese Physics 2007, 16: pp.1719-1724.

DOI: 10.1088/1009-1963/16/6/039

Google Scholar

[11] J. L Wang, J. S. Yao, H. M. Chen, P. B. Bing, Z. Y. Li, K. Zhong, Design and study of high birefringent terahertz photonic crystal fiber with hybrid crystal lattice. Acta Phys. Sin. 2011, 60: pp.104219-6.

DOI: 10.7498/aps.60.104219

Google Scholar

[12] J. Li, Y. Gu H, X. B. Cai, Dispersion analysis of photonic crystal fiber with varying air hole. Optical Communication Technology. 2010, 02: pp.30-32. (in chinese).

Google Scholar

[13] Lattice. H. H. Wang, W. R. Xue, W. M. Zhang. Negative Dispersion Properties of Photonic Crystal Fiber with Dual Core and Composite. Acta Optica Sinica 2008, 01: pp.27-30.

DOI: 10.3788/aos20082801.0027

Google Scholar