Surface Crack Growth from Small Indentations in a Silicon Nitride Square Bar under Cyclic Reversed Torsion

Article Preview

Abstract:

In order to investigate the mechanism of surface cracks in silicon nitride ceramic (HIP-Si3N4) from the viewpoint of shear stress, the authors focused on torsion fatigue testing and observed the crack growth behavior under conditions where the stress ratio was R = - 1. Furthermore the residual stresses around the cracks were measured. Based on these results, mode II growth of surface cracks is discussed and it was concluded that under stress ratio R = -1, surface cracks grow slowly in mode II, for ΔKⅡ less than 3.6MPam1/2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-69

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[2] K. Kitamura: Jour. of Japanese Soc. of Tribologists, Vol. 45 (2000), 4, pp.298-303 (in Japanese).

Google Scholar

[3] J. R. Miner, J. Dell, A. T. Galbato and M. A. Ragen: Trans. ASME, Jour. Eng, for Gas Turb. and Power, Vol. 118 (1996), pp.434-442.

Google Scholar

[4] K. Tanimoto, K. Kajihara and K. Yanai: SAE Paper, 2000-01-1339 (2000), pp.1-14.

Google Scholar

[5] L. Wang, R. W. Snidle and L. Gu: Wear, Vol. 246, (2000), pp.159-173.

Google Scholar

[6] M. Hadfield: Ceramics. Int., Vol. 24, (1998), pp.379-386.

Google Scholar

[7] M. Hadfield and T. A. Stolarski: Trib. Int., Vol. 28, (1995), pp.377-382.

Google Scholar

[8] Y. Wang and M. Hadfield: Wear, Vol. 243, (2000), pp.157-166.

Google Scholar

[9] Y. Wang and M. Hadfield: Wear, Vol. 243, (2000), pp.167-174.

Google Scholar

[10] Y. Wang and M. Hadfield: Wear, Vol. 250, (2001), pp.282-292.

Google Scholar

[11] Z. Chen, J. C. Cuneo, J. J. Mecholsky Jr. and S. Hu: Wear, Vol. 198, (1996), Vol. 197-207.

Google Scholar

[12] Y. Wang and M. Hadfield: Wear, Vol. 225-229, (1999), pp.1284-1292.

Google Scholar

[13] N. Oguma, T. Sugita, M. Nishi amd T. M. Johns, SAE Paper 970005, (1997), pp.31-37.

Google Scholar

[14] K. Kida, M. Urakami, T. Yamazaki and K. Kitamura: Fatigue, Fatigue & Fracture of Engineering Materials & Structures, Vol. 27, (2004), pp.657-668. DOI: 10. 1111/j. 1460-2695. 2004. 00786. x.

DOI: 10.1111/j.1460-2695.2004.00786.x

Google Scholar

[15] Katsuyuki Kida, Makoto Saito and Kazuhisa Kitamura, Fatigue & Fracture of Engineering Materials & Structures, Vol. 28, (2005) pp.1087-1097. DOI: 10. 1111/j. 1460-2695. 2005. 00947. x.

Google Scholar

[16] Katsuyuki Kida, Advanced Materials Research, Vol. 217-218 (2011) pp.866-873. doi: 10. 4028/www. scientific. net/AMR. 217-218. 866.

DOI: 10.4028/www.scientific.net/amr.217-218.866

Google Scholar

[17] Katsuyuki Kida, Takashi Honda and Edson Costa Santos, Advanced Materials Letters, Vol. 2, No. 4, pp.336-340. (2011). doi: 10. 5185/amlett. 2011. 5042am2011.

Google Scholar

[18] M. K. Kassir and G. C. Sih: ASME Ser E, J. Appl. Mech, Vol. 33 (1966), pp.601-611.

Google Scholar