A Heterojunction Film Solar Cell of Glass/ITO/CdS/PbS/Al

Article Preview

Abstract:

A film solar cell was made with a structure of Glass/ITO/CdS/PbS/Al. CdS film was obtained by thermal evaporation. PbS film was prepared by a simple solid-solid reaction. The solar cells are photosensitive in a large spectral range (extending from near infrared to high energy side regions). The cell with the area of 0.15 cm2 without any special treatment has shown the values of open-circuit voltage (Voc) of 138 mV and short circuit current (Jsc) of 0.01 mA/cm2 with the efficiency of 0.33 % and the fill factor (FF) is 0.26 under illumination intensity of 100 mW/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-179

Citation:

Online since:

September 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos: Science, Vol. 295 (2002), P. 2425.

Google Scholar

[1] E. J. D. Klem, D. D. MacNeil, L. Levina, E. H. S argent, Adv. Mater. Vol. 20 (2008), P. 3433.

Google Scholar

[2] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Small, Vol. 6 (2009), P. 307.

Google Scholar

[3] H. C. Leventis, S. P. King, A. Sudlow, M. S. Hill, K. C. Molloy, S. A. Haque, Nano Lett. Vol. 10 (2010), P. 1253.

Google Scholar

[4] Y. Zhou, F. S. Riehle, Y. Yuan, H. -F. Schleiermacher, M. Niggemann, G. A. Urban, M. Krüger, Appl. Phys. Lett. Vol. 96 (2010), P. 013304.

Google Scholar

[5] J. L. Machol, F. W. Wise, R. C. Patel, D. B. Tanner, Phys. Rev. B Vol. 48 (1993), P. 2819.

Google Scholar

[2] K. M. Noone, N. C. Anderson, N. E. Horwitz, A. M. Munro, A. P. Kulkarni and D. S. Ginger: ACS Nano, Vol. 3 (2009), P. 1345.

Google Scholar

[3] D. Cui, J. Xu, T. Zhu, G. Paradee, S. Ashok and M. Gerhold: Appl. Phys. Lett., Vol. 88 (2006), P. 183111.

DOI: 10.1063/1.2201047

Google Scholar

[4] Y. Y. Lin, D. Y. Wang, H. C. Yen, H. L. Chen, C. C. Chen, C. M. Chen, C. Y. Tang and C. W. Chen: Nanotechnology, Vol. 20 (2009), P. 405207.

Google Scholar

[5] H. Jia, W. He, X. Chen, Y. Lei and Z. Zheng: J. Mater. Chem., Vol. 21 (2011), 12824.

Google Scholar

[6] S. A. McDnoald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent: Nat. Mater. Vol. 4 (2005), 138.

Google Scholar

[7] D. Verma, A. R. Rao and V. Dutta: Sol. Energy Mater. Sol. Cells, Vol. 93 (2009), 1482.

Google Scholar

[8] E. J. D. Klem, D. D. MacNeil, L. Levina and E. H. S argent: Adv. Mater. Vol. 20 (2008), P. 3433.

Google Scholar

[9] J. Jiao, X. Liu, W. Gao, C. Wang, H. Feng, X. Zhao and L. Chen: Solid State Sci. Vol. 11 (2009), P. 976.

Google Scholar

[10] K. Szendrei, F. Cordella, M. V. Kovalenko, M. Bo¨berl, G. Hesser, M. Yarema, D. Jarzab, O. V. Mikhnenko, A., M. Gocalinska, F. Saba, A. Quochi, G. Mura, P. Bongiovanni, W. M. Blom, W. Heiss and M. A. Loi: Adv. Mater. Vol. 21 (2009), P. 683.

DOI: 10.1002/adma.200801752

Google Scholar

[11] I. Moreels, Y. Justo, B. D. Geyter, K. Haustraete, J. C. Martins, and Z. Hen: ACS Nano, Vol. 5 (2011), P. (2004).

Google Scholar

[12] D. P. Li, Z. Zheng, Z. Y. Shui, M. Q. Long, J. Yu, K.W. Wong, L. Yang, L.Z. Zhang and W. M. Lau: J. Phys. Chem. C, Vol. 112 (2008), P. 2845.

Google Scholar

[13] D. P. Li, Z. Zheng, Y. Lei, S. X. Ge, Y. D. Zhang, Y. G. Zhang, F. L. Yang, K. W. Wong and W. M. Lau: Cryst. Eng. Comm. Vol. 12 (2010), P. 1856.

Google Scholar

[14] I. Denev and I. Markova: J. Univ. Chem. Technol. Metallurgy, Vol. 43 (2008), 427.

Google Scholar

[15] J. Xu, X. Liu, B. Wang and Z. Qiao: Int. J. Chem. Vol. 2 (2010), P. 194.

Google Scholar

[16] L. Fan, H. Song, H. Zhao, G. Pan, H. Yu, X. Bai, S. Li, Y. Lei, Q. Dai, R. Qin, T. Wang, B. Dong, Z. Zheng and X. Ren: J. Phys. Chem. B, Vol. 110 (2006), P. 12948.

DOI: 10.1021/jp0604589

Google Scholar

[17] L. Fan, H. Song, H. Zhao, G. Pan, L. Liu, B. Dong, F. Wang, X. Bai, R. Qin, X. Kong and X. Ren: J. Nanosci. Nanotechnol., Vol. 8 (2008), P. 3914.

Google Scholar

[18] L. Fan, H. Song, L. Liu, H. Zhao, G. Pan, J. Jiang, B. Dong and X. Bai: J. Nanosci. Nanotechnol., Vol. 9 (2009).

Google Scholar

[7] D.L. Vasilyevsky, L. Nánai, R. Vajtai, Solid-State Electronics, Vol. 31(1988), P. 1505.

DOI: 10.1016/0038-1101(88)90023-8

Google Scholar

[8] J. Herna´ ndez-Borja, Y.V. Vorobiev n, R. Ramı´rez-Bon, Solar Energy Materials & Solar Cells, Vol. 95 (2011), P. 1882.

Google Scholar

[9] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, R. Noufi, Prog. Photovolt: Res. Appl. Vol. 16 (2008), P. 235.

DOI: 10.1002/pip.822

Google Scholar

[10] K. Durose, P.R. Edwards, D.P. Halliday, Journal of Crystal Growth Vol. 197 (1999), P. 733.

Google Scholar

[11] N. Zhao, T. P. Osedach, L. -Y. Chang, S. M. Geyer, D. Wanger, M. T. Binda, A. C. A., M. G. Bawendi, Vladimir Bulovic, ACS nano, Vol. 4 (2010), P. 3743.

DOI: 10.1021/nn100129j

Google Scholar

[12] S. Kar , B. Satpati, P. V . Satyam, S. Chaudhuri, J. Phys. Chem. B, Vol. 109 (2005), P. 19134.

Google Scholar

[13] L. Fan, H. Song, H. Zhao, G. Pan, L. Liu, B. Dong, F. Wang, X. Bai, R. Qin, X. Kong, X. Ren, J. Nanosci. Nanotechnol. Vol. 8 (2008), P. 3914.

Google Scholar