[1]
L. Y. Yu, G. Battai-Santoni, V. Giurgiutiu, Shear lag solution for tuning ultrasonic piezoelectric wafer active sensors with applications to Lamb wave array imaging, International Journal of Engineering Science, 48(2010)848-861.
DOI: 10.1016/j.ijengsci.2010.05.007
Google Scholar
[2]
L. Zhou, G. Yan, HHT method for system identification and damage detection: an experimental study, Journal of Smart Structures and Systems, 2(2006)141-154.
DOI: 10.12989/sss.2006.2.2.141
Google Scholar
[3]
G. Yan, L. Zhou, F. G. Yuan, Wavelet-based built-in damage detection and identification for composites, Proceedings of SPIE Smart Structures and Material Conference, 5765(2005)324-334.
Google Scholar
[4]
S. J. Han, A. N. Palazotto, C. L. Leakeas, Finite element analysis of Lamb wave propagation in a thin aluminum plate, Journal of Aerospace Engineering, 22(2009)185-197.
DOI: 10.1061/(asce)0893-1321(2009)22:2(185)
Google Scholar
[5]
L. Wang, F. G. Yuan, Damage identification in a composite plate using prestack reverse-time migration technique, Structural Health Monitoring, 4(2005)195-211.
DOI: 10.1177/1475921705055233
Google Scholar
[6]
W. J. Meng, L. Zhou, F. G. Yuan, A pre-stack reverse-time migration method for multi-damage detection in composite plate, Proceedings of SPIE Smart Structures and Materials Conference, 617444(2006)1-10.
DOI: 10.1117/12.685446
Google Scholar
[7]
Y. H. Pao, D. C. Keh, S. M. Howard, Dynamic response and wave propagation in plane trusses and frames, AIAA Journal, 37(1999)594-603.
DOI: 10.2514/3.14214
Google Scholar
[8]
J. R. Banerjee, F. W. Williams, Exact dynamic stiffness matrix for composite Timoshenko beams with applications, Journal of Sound and Vibration, 194(1996)573-585.
DOI: 10.1006/jsvi.1996.0378
Google Scholar
[9]
J. Jin, S. T. Quek, Q. G. Wan, Wave boundary element to study Lamb wave propagation in plates, Journal of Sound and Vibration, 288(2005)195-213.
DOI: 10.1016/j.jsv.2005.01.051
Google Scholar
[10]
G. R. Liu, J. D. Achenbach, Strip element method to analyze wave scattering by cracks in anisotropic laminated plates, ASME Journal of Applied Mechanics, 62(1995)607-613.
DOI: 10.1115/1.2895989
Google Scholar
[11]
W. Z. Ostachowic, P. Kudela, A. Zak, M. Krawczuk, Modeling of wave propagation in composite plates using the time domain spectral element method, Journal of Sound and Vibration, 302(2007)728-745.
DOI: 10.1016/j.jsv.2006.12.016
Google Scholar
[12]
J. F. Doyle, Wave propagation in structures, Springer-Verg, New York, (1997).
Google Scholar
[13]
D. Beskos, G. Narayanan, Dynamic response of frameworks by numerical Laplace transform, Computer Methods in Applied Mechanics and Engineering, 37(1983)289-307.
DOI: 10.1016/0045-7825(83)90080-4
Google Scholar
[14]
K. G. Vinod, S. Gopalakrishnan, R. Ganguli, Free vibration and wave propagation analysis of uniform and tapered rotating beams using spectrally formulated finite elements, International Journal of Solids and Structures, 44(2007)5875-5893.
DOI: 10.1016/j.ijsolstr.2007.02.002
Google Scholar
[15]
R. Gangadharan, D. R. Mahapatra, S. Gopalakrishnan, C. R. L. Murthy, M. R. Bhat, On the sensiticity of elastic waves due to structural damages: Time-frequency based indexing method, Journal of Sound and Vibration, 320(2009)915-941.
DOI: 10.1016/j.jsv.2008.09.008
Google Scholar
[16]
M. Krawczuk, M. Palacz, W. Ostachowicz, Wave propagation in plate structures for crack detection, Finite Elements in Analysis and Design, 40(2004)991-1004.
DOI: 10.1016/j.finel.2003.03.001
Google Scholar
[17]
Nag, D. R. Mahapatra, S. Gopalakrishnan, Identification of delaminations in composite: Structural health monitoring software based on spectral estimation and hierarchical genetic algorithm, Proceedings of SPIE-The International Society for Optical Engineering, 5062(2003).
DOI: 10.1117/12.514901
Google Scholar
[18]
M. Krawczuk, M. Palacz, A. Zak, W. Ostachowicz, Transmission and reflection coefficients for damage identification in 1D elements, Key Engineering Materials, 413-414(2009)95-100.
DOI: 10.4028/www.scientific.net/kem.413-414.95
Google Scholar
[19]
M. Krawczuk, M. Palacz, W. Ostachowicz, The dynamic analysis of a cracked Timoshenko beam by the spectral element method, Journal of Sound and Vibration, 264(2003)728-745.
DOI: 10.1016/s0022-460x(02)01387-1
Google Scholar
[20]
J. D. Achenbach. Wave Propagation in Elastic Solids, North-Holland Publishing Company, Amsterdam, (1984).
Google Scholar
[21]
D. Dimarogonas, S. A. Paipetis, Analytical Methods in Rotor Dynamics, Applied Science Publishers, London, (1983).
Google Scholar
[22]
G. R. Cowper, The shear coefficient in Timoshenko's beam theory, ASME Journal of Applied Mechanics Series E, 33(1966)335–340.
Google Scholar
[23]
K. Nikpur, A. Dimarogonas, Local compliance of composite cracked bodies, Composites Science and Technology, 32(1988)209-223.
DOI: 10.1016/0266-3538(88)90021-8
Google Scholar
[24]
G. Bao, S. Ho, Z. Suo, et al, The role of material orthotropy in fracture specimens for composites, Journal of Solids and Structures, 29(1992)1105-1116.
DOI: 10.1016/0020-7683(92)90138-j
Google Scholar