[1]
K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 50 (2005) 511-678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[2]
M.M. Schwartz, Encyclopedia of smart materials, Wiley-Interscience, 1 (2002).
Google Scholar
[3]
T.I. Aydogmus, S. Bor, Processing of porous TiNi alloys using magnesium as space holder, Journal of alloys and compounds, 478 (2009) 705-710.
DOI: 10.1016/j.jallcom.2008.11.141
Google Scholar
[4]
S. Sadrnezhaad, S. Hosseini, Fabrication of porous NiTi-shape memory alloy objects by partially hydrided titanium powder for biomedical applications, Materials & Design, 30 (2009) 4483-4487.
DOI: 10.1016/j.matdes.2009.05.034
Google Scholar
[5]
B. Yuan, C. Chung, P. Huang, M. Zhu, Superelastic properties of porous TiNi shape memory alloys prepared by hot isostatic pressing, Materials Science and Engineering: A, 438 (2006) 657-660.
DOI: 10.1016/j.msea.2005.12.077
Google Scholar
[6]
C. Greiner, S.M. Oppenheimer, D.C. Dunand, High strength, low stiffness, porous NiTi with superelastic properties, Acta biomaterialia, 1 (2005) 705-716.
DOI: 10.1016/j.actbio.2005.07.005
Google Scholar
[7]
S. Zhu, X. Yang, D. Fu, L. Zhang, C. Li, Z. Cui, Stress-strain behavior of porous NiTi alloys prepared by powders sintering, Materials Science and Engineering: A, 408 (2005) 264-268.
DOI: 10.1016/j.msea.2005.08.012
Google Scholar
[8]
M. Geetha, A. Singh, R. Asokamani, A. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants-A review, Progress in Materials Science, 54 (2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[9]
O. Scalzo, S. Turenne, M. Gauthier, V. Brailovski, Mechanical and Microstructural Characterization of Porous NiTi Shape Memory Alloys, Metallurgical and Materials Transactions A, 40 (2009) 2061-(2070).
DOI: 10.1007/s11661-009-9906-1
Google Scholar
[10]
Y.H. Li, L.J. Rong, Y.Y. Li, Compressive property of porous NiTi alloy synthesized by combustion synthesis, Journal of alloys and compounds, 345 (2002) 271-274.
DOI: 10.1016/s0925-8388(02)00412-7
Google Scholar
[11]
G. Ipek Nakas, A.F. Dericioglu, S. Bor, Fatigue behavior of TiNi foams processed by the magnesium space holder technique, Journal of the mechanical behavior of biomedical materials, (2011).
DOI: 10.1016/j.jmbbm.2011.06.021
Google Scholar
[12]
D. Li, Y. Zhang, X. Ma, X. Zhang, Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties, Journal of alloys and compounds, 474 (2009) L1-L5.
DOI: 10.1016/j.jallcom.2008.06.043
Google Scholar
[13]
S. Hosseini, S. Sadrnezhaad, A. Ekrami, Phase transformation behavior of porous NiTi alloy fabricated by powder metallurgical method, Materials Science and Engineering: C, 29 (2009) 2203-2207.
DOI: 10.1016/j.msec.2009.05.006
Google Scholar
[14]
M. Kaya, N. Orhan, G. Tosun, Phase transformation behaviours of porous NiTi SMA fabricated as hollow and solid cylinders by SHS, Materials Science and Technology, 26 (2010) 522-527.
DOI: 10.1179/174328409x410809
Google Scholar
[15]
C. Zanotti, P. Giuliani, P. Bassani, Z. Zhang, A. Chrysanthou, Comparison between the thermal properties of fully dense and porous NiTi SMAs, Intermetallics, 18 (2010) 14-21.
DOI: 10.1016/j.intermet.2009.06.001
Google Scholar
[16]
B. Tay, C. Goh, Y. Gu, C. Lim, M. Yong, M. Ho, M. Myint, Porous NiTi fabricated by self-propagating high-temperature synthesis of elemental powders, Journal of materials processing technology, 202 (2008) 359-364.
DOI: 10.1016/j.jmatprotec.2007.09.037
Google Scholar
[17]
M.D. McNeese, D.C. Lagoudas, T.C. Pollock, Processing of TiNi from elemental powders by hot isostatic pressing, Materials Science and Engineering A, 280 (2000) 334-348.
DOI: 10.1016/s0921-5093(99)00550-x
Google Scholar
[18]
A. Bansiddhi, D. Dunand, Shape-memory NiTi foams produced by replication of NaCl space-holders, Acta biomaterialia, 4 (2008) 1996-(2007).
DOI: 10.1016/j.actbio.2008.06.005
Google Scholar
[19]
Y. Zhao, M. Taya, Y. Kang, A. Kawasaki, Compression behavior of porous NiTi shape memory alloy, Acta Materialia, 53 (2005) 337-343.
DOI: 10.1016/j.actamat.2004.09.029
Google Scholar
[20]
B. Li, L. Rong, Y. Li, Microstructure and superelasticity of porous NiTi alloy, Science in China Series E: Technological Sciences, 42 (1999) 94-99.
DOI: 10.1007/bf02917064
Google Scholar
[21]
J. Xiong, Y. Li, X. Wang, P. Hodgson, C. Wen, Titanium-nickel shape memory alloy foams for bone tissue engineering, Journal of the mechanical behavior of biomedical materials, 1 (2008) 269-273.
DOI: 10.1016/j.jmbbm.2007.09.003
Google Scholar
[22]
A. Bansiddhi, D.C. Dunand, Shape-memory NiTi foams produced by solid-state replication with NaF, Intermetallics, 15 (2007) 1612-1622.
DOI: 10.1016/j.intermet.2007.06.013
Google Scholar
[23]
X. Zhao, H. Sun, L. Lan, J. Huang, H. Zhang, Y. Wang, Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders, Materials Letters, 63 (2009) 2402-2404.
DOI: 10.1016/j.matlet.2009.07.069
Google Scholar
[24]
M. Köhl, M. Bram, A. Moser, H.P. Buchkremer, T. Beck, D. Stöver, Characterization of porous, net-shaped NiTi alloy regarding its damping and energy-absorbing capacity, Materials Science and Engineering: A, 528 (2011) 2454-2462.
DOI: 10.1016/j.msea.2010.11.055
Google Scholar
[25]
S. Zhu, X. Yang, F. Hu, S. Deng, Z. Cui, Processing of porous TiNi shape memory alloy from elemental powders by Ar-sintering, Materials Letters, 58 (2004) 2369-2373.
DOI: 10.1016/j.matlet.2004.02.017
Google Scholar
[26]
C. Tang, L. Zhang, C. Wong, K. Chan, T. Yue, Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering, Materials Science and Engineering: A, (2011).
DOI: 10.1016/j.msea.2011.04.040
Google Scholar
[27]
B. Ye, D.C. Dunand, Titanium foams produced by solid-state replication of NaCl powders, Materials Science and Engineering: A, 528 (2010) 691-697.
DOI: 10.1016/j.msea.2010.09.054
Google Scholar
[28]
M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: a review, Progress in Materials Science, (2011).
DOI: 10.1016/j.pmatsci.2011.11.001
Google Scholar
[29]
P. Zioupos, R.B. Cook, J.R. Hutchinson, Some basic relationships between density values in cancellous and cortical bone, Journal of biomechanics, 41 (2008) 1961-(1968).
DOI: 10.1016/j.jbiomech.2008.03.025
Google Scholar
[30]
J.L. Katz, A. Meunier, The elastic anisotropy of bone, Journal of biomechanics, 20 (1987) 1063-1070.
Google Scholar