Changes in the Physical and Chemical and Volatile Flavor Characteristics of Scomberomorus niphonius during Chilled and Frozen Storage

Article Preview

Abstract:

Changes in chemical, textural, and volatile flavor properties were investigated for mackerel fish (Scomberomorus niphonius) stored in cold rooms and freezers. Correlation and multivariate analysis showed a significant time-dependent relationship between TVBN/TMA (Y) and storage time (X) for fish stored in cold rooms, with R=0.996-0.997 values of Gompertz model (Y=a*exp(-exp(b-cX)), and there was a good linear relationship between TVBN and TMA. Combined with the textural properties, the polynomial fitting model (Y=a+bX+cX2+…, R=0.982-0.991) was applied and elucidated the correlation between hardness/springiness (Y) and TVBN (X), the rational function model (Y=(a+bX)/(1+cX+dX2), R=0.975-0.979) used for the chewiness (Y) and TVBN (X). The electronic nose analysis revealed that the variation of muscle volatile flavor compounds was found out along the PC1 to the right, and then along the PC2 to the upward and further to the downward based on the principal component analysis (PCA). Furthermore, the linear discriminant analysis (LDA) had better distinction effect for the changes of fish flavor than PCA. Results from this study suggested that the texture analysis in combination with electronic nose techniques might be utilized as a rapid expeditious process for predicting freshness and shelf life of the alive-storage fish or other aquatic products.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 573-574)

Pages:

1057-1063

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Bae, S.H. Yoon and S.Y. Lim: Food Sci. Biotechnol. Vol. 20 (2011). p.709.

Google Scholar

[2] S. Simeonidou, A. Govaris and K. Vareltzis: Food Res. Int. Vol 30 (1998). p.479.

Google Scholar

[3] Z. Tzikas, I. Ambrosiadis and N. Soultos: Food Control. Vol. 18 (2007). p.1172.

Google Scholar

[4] Q.L. Shi, C.H. Xue and Y. Zhao: J. Food Eng. Vol 87 (2008). p.74.

Google Scholar

[5] Y. Ozogul and E. Balikci: Food Bioprocess Technol. Vol. 29 (2011). p.1.

Google Scholar

[6] P. Malle and S.H. Tao: J. Food Prot. Vol. 50 (1987). p.756.

Google Scholar

[7] A.E. Goulas and M.G. Kontominas: Eur. Food Res. Technol. Vol. 224 (2007). p.545.

Google Scholar

[8] O. Martinez, J. Salmerón, M.D. Guillén and C. Casas: Food Chem. Vol. 100 (2007). p.498.

Google Scholar

[9] T. Mishima, T. Nonaka, A. Okamoto and M. Tsuchimoto: Fisheries Sci. Vol. 71 (2005). p.187.

Google Scholar

[10] S. Benjakul, T.A. Seymour, M.T. Morrissey and H. An: J. Food Sci. Vol. 62 (1997). p.729.

Google Scholar

[11] AOAC: (Gaithersburg, MD, USA, (1978).

Google Scholar

[12] M.C. Bourne: Food Technol. Vol. 32 (1978). p.62.

Google Scholar

[13] S. Metin, N. Erkan, C. Varlik and N. Aran: Eur. Food Res. Technol. Vol. 213 (2001). p.174.

Google Scholar

[14] K.I. Sallam, A.M. Ahmed, M.M. Elgazzar and E.A. Eldaly: Food Chem. Vol. 102 (2007). p.1061.

Google Scholar

[15] A. Ludorff and U. Meyer: Fische und Fisherzeugnisse (Paul Parey Verlag. Berlin Hamburg, 1973).

Google Scholar

[16] M. Mbarki, S. Sadok and I. Barkallah: Radiat. Phys. Chem. Vol. 78 (2009). p.288.

Google Scholar

[17] S. Simeonidou, A. Govaris and K. Vareltzis: Z Lebensm Unters F. A. Vol. 204 (1997). p.405.

Google Scholar

[18] Z.Y. Dai, Y.N. Cui and H.H. Wang: Food Fermentation Ind. Vol. 34 (2008). p.188.

Google Scholar

[19] T. Hattula, K. Elfving, U.M. Mroueh and T. Luoma: LWT. Vol. 34 (2001). p.521.

Google Scholar

[20] R. Laksmanan, J.R. Piggott and A. Paterson: Trends Food Sci. Technol. Vol. 14 (2003). p.354.

Google Scholar

[21] S. Riebroy, S. Benjakul, W. Visessanguan and M. Tanaka: Food Chem. Vol. 102 (2007), p.270.

Google Scholar

[22] B. Zhou and J. Wang: Int. J. Agr. Biolog. Vol. 13 (2011). p.707.

Google Scholar