[1]
S. Kishwar, K. ul Hasan, N. H. Alvi, P. Klason, O. Nur, and M. Willander, A comparative study of the electrodeposition and the aqueous chemical growth techniques for the utilization of ZnO nanorods on p-GaN for white light emitting diodes, Superlattices Microstruct. 49 (2011) 32-42.
DOI: 10.1016/j.spmi.2010.10.004
Google Scholar
[2]
M. H. Mamat, M. Z. Sahdan, Z. Khusaimi, A. Z. Ahmed, S. Abdullah, and M. Rusop, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications, Opt. Mater. 32 (2010) 696-699.
DOI: 10.1016/j.optmat.2009.12.005
Google Scholar
[3]
D. Barreca, D. Bekermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, and E. Tondello, 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases, Sens. Actuators, B. 149 (2010) 1-7.
DOI: 10.1016/j.snb.2010.06.048
Google Scholar
[4]
H.-J. Lim, D. Y. Lee, and Y.-J. Oh, Gas sensing properties of ZnO thin films prepared by microcontact printing, Sens. Actuators, A. 125 (2006) 405–410.
DOI: 10.1016/j.sna.2005.08.031
Google Scholar
[5]
L. Lu, R. Li, K. Fan, and T. Peng, Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles, Solar Energy. 84 (2010) 844-853.
DOI: 10.1016/j.solener.2010.02.010
Google Scholar
[6]
C. Liu, Y. Masuda, Y. Wu, and O. Takai, A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces, Thin Solid Films. 503 (2006) 110 – 114.
DOI: 10.1016/j.tsf.2005.12.075
Google Scholar
[7]
T. Tani, L. Madler, and S. E. Pratsinis, Homogeneous ZnO nanoparticles by flame spray pyrolysis, J. Nanopart. Res. 4 (2002) 337–343.
Google Scholar
[8]
S. Music, S. Popovic, M. Maljkovic, and Dragcˇevic, Influence of synthesis procedure on the formation and properties of zinc oxide, J. Alloys Compd. 347 (2002) 324–332.
Google Scholar
[9]
M. H. Mamat, Z. Khusaimi, M. Z. Musa, M. Z. Sahdan, and M. Rusop, Novel synthesis of aligned Zinc oxide nanorods on a glass substrate by sonicated sol-gel immersion, Mater. Lett. 64 (2010) 1211-1214.
DOI: 10.1016/j.matlet.2010.02.053
Google Scholar
[10]
Z. Khusaimi, S. Amizam, M. H.Mamat, M. Z. Sahdan, M. K. Ahmad, N. Abdullah, and M. Rusop, Controlled growth of zinc oxide nanorods by aqueous-solution method, Synthesis and Reactivity in Inorganic, Met. Org. Nano Met. Chem. 40 (2010) 190-194.
DOI: 10.1080/15533171003629147
Google Scholar
[11]
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater. 15 (2003) 353-389.
DOI: 10.1002/adma.200390087
Google Scholar
[12]
A. Azlinda, Z. Khusaimi, S. Abdullah, and M. Rusop, Characterization of Urea versus HMTA in the Preparation of Zinc Oxide Nanostructures by Solution-Immersion Method Grown on Gold-Seeded Silicon Substrate, Adv. Mater. Res. 364 (2012) 45-49.
DOI: 10.4028/www.scientific.net/amr.364.45
Google Scholar
[13]
S. Wei, J. Lian, and H. Wu, Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method, Mater. Charact. 61 (2010) 1239-1244.
DOI: 10.1016/j.matchar.2010.08.002
Google Scholar
[14]
Y. Zhang, G. Du, X. Yang, B. Zhao, Y. Ma, T. Yang, H. C. Ong, D. Liu, and S. Yang, Effect of annealing on ZnO thin films grown on (001) silicon substrate by low-pressure metalorganic chemical vapour deposition, Semicond. Sci. Technol. 19 (2004) 755–758.
DOI: 10.1088/0268-1242/19/6/017
Google Scholar
[15]
J. Yang, J. Lang, C. L. Yang, Q. Han, Y. Zhang, D. Wang, M. Gao, and X. Liu, Effects of substrate on morphologies and photoluminescence properties of ZnO nanorods, Appl. Surf. Sci. 255 (2008) 2500–2503.
DOI: 10.1016/j.apsusc.2008.07.124
Google Scholar
[16]
N. A. K. Aznan and M. R. Johan, Quantum Size Effect in ZnO Nanoparticles via Mechanical Milling, J. Nanomater. 2012 (2012) 1-4.
DOI: 10.1155/2012/439010
Google Scholar