Annealing Effect on the Surface Morphology and Photoluminescence Properties of ZnO Hexagonal Rods by Immersion Method

Article Preview

Abstract:

ZnO hexagonal rod structure were prepared by immersion method deposited onto Si (Si/ZnO) and gold-seeded Si substrate (ZnO/Au/Si). The annealing temperatures were varied from 400, 500 and 600 °C. The effect of annealing temperature on the surface morphology and photoluminescence characteristics was investigated. The samples were characterized by Field Emission Scanning Electron Microscope (FESEM) to study their morphology and structural properties while the optical properties were characterized at room temperature using Photoluminescence Spectroscopy. The shape of ZnO showed growth of rods with hexagonal shape. As the annealing temperature increased, the morphology study indicates that diameter size of ZnO decreased while the crystallinity increases. The structures has high surface area, is a potential metal oxide nanostructures to be develop for optoelectronic devices and chemical sensors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

353-356

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kishwar, K. ul Hasan, N. H. Alvi, P. Klason, O. Nur, and M. Willander, A comparative study of the electrodeposition and the aqueous chemical growth techniques for the utilization of ZnO nanorods on p-GaN for white light emitting diodes, Superlattices Microstruct. 49 (2011) 32-42.

DOI: 10.1016/j.spmi.2010.10.004

Google Scholar

[2] M. H. Mamat, M. Z. Sahdan, Z. Khusaimi, A. Z. Ahmed, S. Abdullah, and M. Rusop, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications, Opt. Mater. 32 (2010) 696-699.

DOI: 10.1016/j.optmat.2009.12.005

Google Scholar

[3] D. Barreca, D. Bekermann, E. Comini, A. Devi, R. A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, and E. Tondello, 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases, Sens. Actuators, B. 149 (2010) 1-7.

DOI: 10.1016/j.snb.2010.06.048

Google Scholar

[4] H.-J. Lim, D. Y. Lee, and Y.-J. Oh, Gas sensing properties of ZnO thin films prepared by microcontact printing, Sens. Actuators, A. 125 (2006) 405–410.

DOI: 10.1016/j.sna.2005.08.031

Google Scholar

[5] L. Lu, R. Li, K. Fan, and T. Peng, Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles, Solar Energy. 84 (2010) 844-853.

DOI: 10.1016/j.solener.2010.02.010

Google Scholar

[6] C. Liu, Y. Masuda, Y. Wu, and O. Takai, A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces, Thin Solid Films. 503 (2006) 110 – 114.

DOI: 10.1016/j.tsf.2005.12.075

Google Scholar

[7] T. Tani, L. Madler, and S. E. Pratsinis, Homogeneous ZnO nanoparticles by flame spray pyrolysis, J. Nanopart. Res. 4 (2002) 337–343.

Google Scholar

[8] S. Music, S. Popovic, M. Maljkovic, and Dragcˇevic, Influence of synthesis procedure on the formation and properties of zinc oxide, J. Alloys Compd. 347 (2002) 324–332.

Google Scholar

[9] M. H. Mamat, Z. Khusaimi, M. Z. Musa, M. Z. Sahdan, and M. Rusop, Novel synthesis of aligned Zinc oxide nanorods on a glass substrate by sonicated sol-gel immersion, Mater. Lett. 64 (2010) 1211-1214.

DOI: 10.1016/j.matlet.2010.02.053

Google Scholar

[10] Z. Khusaimi, S. Amizam, M. H.Mamat, M. Z. Sahdan, M. K. Ahmad, N. Abdullah, and M. Rusop, Controlled growth of zinc oxide nanorods by aqueous-solution method, Synthesis and Reactivity in Inorganic, Met. Org. Nano Met. Chem. 40 (2010) 190-194.

DOI: 10.1080/15533171003629147

Google Scholar

[11] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater. 15 (2003) 353-389.

DOI: 10.1002/adma.200390087

Google Scholar

[12] A. Azlinda, Z. Khusaimi, S. Abdullah, and M. Rusop, Characterization of Urea versus HMTA in the Preparation of Zinc Oxide Nanostructures by Solution-Immersion Method Grown on Gold-Seeded Silicon Substrate, Adv. Mater. Res. 364 (2012) 45-49.

DOI: 10.4028/www.scientific.net/amr.364.45

Google Scholar

[13] S. Wei, J. Lian, and H. Wu, Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method, Mater. Charact. 61 (2010) 1239-1244.

DOI: 10.1016/j.matchar.2010.08.002

Google Scholar

[14] Y. Zhang, G. Du, X. Yang, B. Zhao, Y. Ma, T. Yang, H. C. Ong, D. Liu, and S. Yang, Effect of annealing on ZnO thin films grown on (001) silicon substrate by low-pressure metalorganic chemical vapour deposition, Semicond. Sci. Technol. 19 (2004) 755–758.

DOI: 10.1088/0268-1242/19/6/017

Google Scholar

[15] J. Yang, J. Lang, C. L. Yang, Q. Han, Y. Zhang, D. Wang, M. Gao, and X. Liu, Effects of substrate on morphologies and photoluminescence properties of ZnO nanorods, Appl. Surf. Sci. 255 (2008) 2500–2503.

DOI: 10.1016/j.apsusc.2008.07.124

Google Scholar

[16] N. A. K. Aznan and M. R. Johan, Quantum Size Effect in ZnO Nanoparticles via Mechanical Milling, J. Nanomater. 2012 (2012) 1-4.

DOI: 10.1155/2012/439010

Google Scholar