[1]
M.Narayan Bhat, S.M. Dharmaprakash, Growth of nonlinear optical g-glycine crystals, Journal of Crystal Growth 236 (2002) 376–380.
DOI: 10.1016/s0022-0248(01)02094-2
Google Scholar
[2]
K. Srinivasan, Crystal growth of a and g glycine polymorphs and their polymorphic phase transformations, Journal of Crystal Growth 311 (2008) 156–162.
DOI: 10.1016/j.jcrysgro.2008.10.084
Google Scholar
[3]
K. Srinivasan, J. Arumugam, Growth of non-linear optical g -glycine single crystals and their characterization, Optical Materials 30 (2007) 40–43.
DOI: 10.1016/j.optmat.2006.11.049
Google Scholar
[4]
B.Narayana Moolya, A.Jayarama, M.R. Sureshkumar, S.M. Dharmaprakash, Hydrogen bonded nonlinear optical g-glycine: Crystal growth and characterization, Journal of Crystal Growth 280 (2005) 581–586.
DOI: 10.1016/j.jcrysgro.2005.03.074
Google Scholar
[5]
M.R. Suresh Kumar, H.J. Ravindra, S.M. Dharmaprakash ,Synthesis, crystal growth and characterization of glycine lithium sulphate, Journal of Crystal Growth 306 (2007) 361–365.
DOI: 10.1016/j.jcrysgro.2007.05.015
Google Scholar
[6]
M. N. Ravishankar, R. Chandramani and A.P. Gnanaprakash, Optical and mechanical characterization of solution grown semi organic NLO crystals, Rasayan J. Chem Vol.4, No.1 (2011), 86-90.
Google Scholar
[7]
T. Balakrishnan, R. Ramesh Babu, K. Ramamurthi, Growth, structural, optical and thermal properties of g-glycine crystal, Spectrochimica Acta Part A 69 (2008) 1114–1118.
DOI: 10.1016/j.saa.2007.06.025
Google Scholar
[8]
R. Parimaladevi, C. Sekar, Crystal growth and spectral studies of nonlinear optical g-glycine single crystal grown from phosphoric acid, Spectrochimica Acta Part A 76 (2010) 490– 495.
DOI: 10.1016/j.saa.2010.04.008
Google Scholar
[9]
R. Ashok Kumar, R.Ezhil Vizhi, N. Vijayan, D. Rajan Babu, Structural,dielectric and piezoelectric properties of non linear optical g-glycine single crystals ,Physica B 406 (2011) 2594-2600.
DOI: 10.1016/j.physb.2011.04.001
Google Scholar
[10]
R. Ashok Kumar, R. Ezhil Vizhi, N. Sivakumar, N. Vijayan, D. Rajan Babu, Crystal growth, Optical and thermal studies of nonlinear optical g-glycine single crystal grown from lithium nitrate, Optik 123 (2012) 409– 413.
DOI: 10.1016/j.ijleo.2011.04.019
Google Scholar
[11]
R. Ezhil Vizhi, D. Rajan Babu and K. Sathiyanarayanan, Study of microhardness and its related Physical Constant of Ferroelectric Glycine Phophite (GPI) Single Crystals, Ferroelectrics Letters 37, (2010) 23-29.
DOI: 10.1080/07315171003800640
Google Scholar
[12]
Susmita Karan, S.P. Sen Gupta, Vickers microhardness studies on solution-grown single crystals of magnesium sulphate hepta-hydrate, Materials Science and Engineering A 398 (2005) 198–203.
DOI: 10.1016/j.msea.2005.03.016
Google Scholar
[13]
K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, Fracture mechanics, crack propagation and microhardness studies on flux grown ErAlO3 single crystals, J. Mater. Sci. Technol. 16, No.4 (2000).
DOI: 10.1016/s0254-0584(99)00192-3
Google Scholar
[14]
Vineeta Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mechanical characteristics of flux- grown calcium titanate and nickel titanate crystals, Materials Chemistry and Physics 89 (2005) 64–71.
DOI: 10.1016/j.matchemphys.2004.08.027
Google Scholar
[15]
K. Nihara, R. Morena, and D. P. H. Hasselman, Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratio, J. Mater.Sci. Lett. 1, 13–16 (1982).
DOI: 10.1007/bf00724706
Google Scholar
[16]
N. A. Goryunova, A. S. Borshchevskii, and D. N. Tretiakov, Hardness, Semiconductor and Semimetals, Eds. R.K. Willardson and A.C. Beer. New York: Academic Press; 1968.
DOI: 10.1016/s0080-8784(08)60342-7
Google Scholar
[17]
M. N. Ravishankar, R. Chandramani, A.P. Gnanaprakash, Evaluation of stiffness constant C11 and Yield Strength (sV) Of Solution Grown semi organic nonlinear optical crystals, Journal of optoelectronics and Biomedical Materials Vol. 3 Issue 4, October-December 2011 pp.101-106.
Google Scholar