Mechanical Studies of Nonlinear Optical γ-Glycine Single Crystal Grown in the Presence of Lithium Nitrate

Article Preview

Abstract:

Single Crystal of γ-glycine lithium nitrate with non-linear optical material have been grown by slow evaporation method at room temperature. Structural and Crystalline nature of the grown γ-glycine lithium nitrate crystal was confirmed by powder X-ray diffraction technique. UV-Visible transmittance study was performed to analyze optical transparency of γ-glycine crystal and found that the crystal was transparent in the entire visible region. The mechanical properties of the grown crystal was subjected to Vickers hardness test and the Brittleness index (Bi), Fracture toughness (Kc), Elastic stiffness constant (C11) were estimated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-149

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.Narayan Bhat, S.M. Dharmaprakash, Growth of nonlinear optical g-glycine crystals, Journal of Crystal Growth 236 (2002) 376–380.

DOI: 10.1016/s0022-0248(01)02094-2

Google Scholar

[2] K. Srinivasan, Crystal growth of a and g glycine polymorphs and their polymorphic phase transformations, Journal of Crystal Growth 311 (2008) 156–162.

DOI: 10.1016/j.jcrysgro.2008.10.084

Google Scholar

[3] K. Srinivasan, J. Arumugam, Growth of non-linear optical g -glycine single crystals and their characterization, Optical Materials 30 (2007) 40–43.

DOI: 10.1016/j.optmat.2006.11.049

Google Scholar

[4] B.Narayana Moolya, A.Jayarama, M.R. Sureshkumar, S.M. Dharmaprakash, Hydrogen bonded nonlinear optical g-glycine: Crystal growth and characterization, Journal of Crystal Growth 280 (2005) 581–586.

DOI: 10.1016/j.jcrysgro.2005.03.074

Google Scholar

[5] M.R. Suresh Kumar, H.J. Ravindra, S.M. Dharmaprakash ,Synthesis, crystal growth and characterization of glycine lithium sulphate, Journal of Crystal Growth 306 (2007) 361–365.

DOI: 10.1016/j.jcrysgro.2007.05.015

Google Scholar

[6] M. N. Ravishankar, R. Chandramani and A.P. Gnanaprakash, Optical and mechanical characterization of solution grown semi organic NLO crystals, Rasayan J. Chem Vol.4, No.1 (2011), 86-90.

Google Scholar

[7] T. Balakrishnan, R. Ramesh Babu, K. Ramamurthi, Growth, structural, optical and thermal properties of g-glycine crystal, Spectrochimica Acta Part A 69 (2008) 1114–1118.

DOI: 10.1016/j.saa.2007.06.025

Google Scholar

[8] R. Parimaladevi, C. Sekar, Crystal growth and spectral studies of nonlinear optical g-glycine single crystal grown from phosphoric acid, Spectrochimica Acta Part A 76 (2010) 490– 495.

DOI: 10.1016/j.saa.2010.04.008

Google Scholar

[9] R. Ashok Kumar, R.Ezhil Vizhi, N. Vijayan, D. Rajan Babu, Structural,dielectric and piezoelectric properties of non linear optical g-glycine single crystals ,Physica B 406 (2011) 2594-2600.

DOI: 10.1016/j.physb.2011.04.001

Google Scholar

[10] R. Ashok Kumar, R. Ezhil Vizhi, N. Sivakumar, N. Vijayan, D. Rajan Babu, Crystal growth, Optical and thermal studies of nonlinear optical g-glycine single crystal grown from lithium nitrate, Optik 123 (2012) 409– 413.

DOI: 10.1016/j.ijleo.2011.04.019

Google Scholar

[11] R. Ezhil Vizhi, D. Rajan Babu and K. Sathiyanarayanan, Study of microhardness and its related Physical Constant of Ferroelectric Glycine Phophite (GPI) Single Crystals, Ferroelectrics Letters 37, (2010) 23-29.

DOI: 10.1080/07315171003800640

Google Scholar

[12] Susmita Karan, S.P. Sen Gupta, Vickers microhardness studies on solution-grown single crystals of magnesium sulphate hepta-hydrate, Materials Science and Engineering A 398 (2005) 198–203.

DOI: 10.1016/j.msea.2005.03.016

Google Scholar

[13] K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, Fracture mechanics, crack propagation and microhardness studies on flux grown ErAlO3 single crystals, J. Mater. Sci. Technol. 16, No.4 (2000).

DOI: 10.1016/s0254-0584(99)00192-3

Google Scholar

[14] Vineeta Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mechanical characteristics of flux- grown calcium titanate and nickel titanate crystals, Materials Chemistry and Physics 89 (2005) 64–71.

DOI: 10.1016/j.matchemphys.2004.08.027

Google Scholar

[15] K. Nihara, R. Morena, and D. P. H. Hasselman, Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratio, J. Mater.Sci. Lett. 1, 13–16 (1982).

DOI: 10.1007/bf00724706

Google Scholar

[16] N. A. Goryunova, A. S. Borshchevskii, and D. N. Tretiakov, Hardness, Semiconductor and Semimetals, Eds. R.K. Willardson and A.C. Beer. New York: Academic Press; 1968.

DOI: 10.1016/s0080-8784(08)60342-7

Google Scholar

[17] M. N. Ravishankar, R. Chandramani, A.P. Gnanaprakash, Evaluation of stiffness constant C11 and Yield Strength (sV) Of Solution Grown semi organic nonlinear optical crystals, Journal of optoelectronics and Biomedical Materials Vol. 3 Issue 4, October-December 2011 pp.101-106.

Google Scholar