Dielectric and Conductivity Study of SrBi2Ta2O9 Ceramic by Microwave Sintering Technique

Abstract:

Article Preview

Bismuth layered structure SrBi2Ta2O9 ceramic is prepared by the microwave sintering technique via solid state route at 1100°C. X-ray diffraction analysis is used to analyze the phase purity and identifies the orthorhombic phase with A21am space group. The fracture surface morphology of the sintered pellet is visualized by scanning electron microscopy. Diffusive phase transition behavior is existed in the temperature dependence dielectric study at Tc = 305°C. The electrical ac and dc conductivity study shows the negative temperature coefficient of resistance behavior. Activation energy from the Arrhenius plot is studied to discuss the fatigue property.

Info:

Periodical:

Edited by:

D. Rajan Babu

Pages:

169-172

Citation:

V. Senthil et al., "Dielectric and Conductivity Study of SrBi2Ta2O9 Ceramic by Microwave Sintering Technique", Advanced Materials Research, Vol. 584, pp. 169-172, 2012

Online since:

October 2012

Export:

Price:

$38.00

[1] C.H. Lu, D.P. Chang, J. Phys. Chem. Solids. 69 (2008) 480.

[2] A.B. Panda, A. Tarafdar, S. Sen, A. Pathak, P. Pramanik, J. Mater. Sci. 39 (2004) 3739.

[3] Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G. Cao, Mater. Sci. Eng. B 86 (2001) 70.

[4] Y. Torii, K. Tato, A. Tsuzuki, H.J. Hwang, S.K. Dey, J. Mater. Sci. Lett. 17 (1998) 827.

[5] N. Seong, C. Yang, W. Shin, S. Yoon, Appl. Phys. Lett. 72 (1998) 1374.

[6] R. Dat, J.K. Lee, O. Auciello, A.I. Kingon, Appl. Phys. Lett. 67 (1995) 572.

[7] C. A-Paz de Araujo, J.D. Cuchiaro, L.D. Memillan, M.C. Scott, J.F. Scott, Nature London 374 (1995) 627.

[8] K. Amanuma, T. Hase, Y. Miyasaka, Appl. Phys. Lett. 66 (1995) 221.

[9] C. Wang, Q.F. Fang, Z.G. Zhu, Appl. Phys. Lett. 80 (2002) 3578.

[10] A. D Rae, J. G Thompson, R. L Withers, Acta Crystallogr. Sect. B Struct. Sci. 48 (1992) 418.

[11] T. C Chen, C. L Thio, S. B Desu, J. Mater. Res. 12 (1997) 2628.

[12] C.H. Lu, J.T. Lee, Ceram. Int. 24 (1998) 285.

[13] H. Irie, M. Miyayama, Appl. Phys. Lett. 79 (2001) 251.

[14] Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 74 (1999) (1904).

[15] Y. Noguchi, M. Miyayama, T. Kudo, J. Appl. Phys. 88 (2000) 2146.

[16] C.T. Hu, H.W. Chen, H.Y. Chang, I.N. Lin, Jpn. J. Appl. Phys. 37 (1998) 186.

[17] O.P. Thakur, C. Prakash, D. Agrawal, Mater. Lett. 56 (2002) 970.

[18] C.Y. Fang, C. Wang, A.V. Polotai, D.K. Agrawal, M.T. Lanagan, Mater. Lett. 62 (2008) 2551.

[19] Z. Xie, Z. Gui, L. Li, T. Su, Y. Huang, Mater. Lett. 36 (1998) 191.

[17] K. Uchino, S. Nomura, Integr. Ferroelectr. 44 (1982) 55.

[18] A.K. Jonscher, Dielectric Relaxation in Solids, Chelsea, London, (1983).

[19] B. Sih, A. Jung, Z.G. Ye, J. Appl. Phys. 92 (2002) 3928.

[20] M. Kumar, Z.G. Ye, J. Appl. Phys. 90 (2001) 934.