Dielectric and Conductivity Study of SrBi2Ta2O9 Ceramic by Microwave Sintering Technique

Article Preview

Abstract:

Bismuth layered structure SrBi2Ta2O9 ceramic is prepared by the microwave sintering technique via solid state route at 1100°C. X-ray diffraction analysis is used to analyze the phase purity and identifies the orthorhombic phase with A21am space group. The fracture surface morphology of the sintered pellet is visualized by scanning electron microscopy. Diffusive phase transition behavior is existed in the temperature dependence dielectric study at Tc = 305°C. The electrical ac and dc conductivity study shows the negative temperature coefficient of resistance behavior. Activation energy from the Arrhenius plot is studied to discuss the fatigue property.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-172

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.H. Lu, D.P. Chang, J. Phys. Chem. Solids. 69 (2008) 480

Google Scholar

[2] A.B. Panda, A. Tarafdar, S. Sen, A. Pathak, P. Pramanik, J. Mater. Sci. 39 (2004) 3739

Google Scholar

[3] Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G. Cao, Mater. Sci. Eng. B 86 (2001) 70

Google Scholar

[4] Y. Torii, K. Tato, A. Tsuzuki, H.J. Hwang, S.K. Dey, J. Mater. Sci. Lett. 17 (1998) 827

Google Scholar

[5] N. Seong, C. Yang, W. Shin, S. Yoon, Appl. Phys. Lett. 72 (1998) 1374

Google Scholar

[6] R. Dat, J.K. Lee, O. Auciello, A.I. Kingon, Appl. Phys. Lett. 67 (1995) 572

Google Scholar

[7] C. A-Paz de Araujo, J.D. Cuchiaro, L.D. Memillan, M.C. Scott, J.F. Scott, Nature London 374 (1995) 627

Google Scholar

[8] K. Amanuma, T. Hase, Y. Miyasaka, Appl. Phys. Lett. 66 (1995) 221

Google Scholar

[9] C. Wang, Q.F. Fang, Z.G. Zhu, Appl. Phys. Lett. 80 (2002) 3578

Google Scholar

[10] A.D Rae, J.G Thompson, R.L Withers, Acta Crystallogr. Sect. B Struct. Sci. 48 (1992) 418

Google Scholar

[11] T.C Chen, C. L Thio, S.B Desu, J. Mater. Res. 12 (1997) 2628

Google Scholar

[12] C.H. Lu, J.T. Lee, Ceram. Int. 24 (1998) 285

Google Scholar

[13] H. Irie, M. Miyayama, Appl. Phys. Lett. 79 (2001) 251

Google Scholar

[14] Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano, F. Izumi, Appl. Phys. Lett. 74 (1999) (1904)

Google Scholar

[15] Y. Noguchi, M. Miyayama, T. Kudo, J. Appl. Phys. 88 (2000) 2146

Google Scholar

[16] C.T. Hu, H.W. Chen, H.Y. Chang, I.N. Lin, Jpn. J. Appl. Phys. 37 (1998) 186

Google Scholar

[17] O.P. Thakur, C. Prakash, D. Agrawal, Mater. Lett. 56 (2002) 970

Google Scholar

[18] C.Y. Fang, C. Wang, A.V. Polotai, D.K. Agrawal, M.T. Lanagan, Mater. Lett. 62 (2008) 2551

Google Scholar

[19] Z. Xie, Z. Gui, L. Li, T. Su, Y. Huang, Mater. Lett. 36 (1998) 191

Google Scholar

[17] K. Uchino, S. Nomura, Integr. Ferroelectr. 44 (1982) 55

Google Scholar

[18] A.K. Jonscher, Dielectric Relaxation in Solids, Chelsea, London, (1983)

Google Scholar

[19] B. Sih, A. Jung, Z.G. Ye, J. Appl. Phys. 92 (2002) 3928

Google Scholar

[20] M. Kumar, Z.G. Ye, J. Appl. Phys. 90 (2001) 934

Google Scholar