Activated Carbon - Mn3O4 Nanocomposites – Synthesis and Magnetic Studies

Article Preview

Abstract:

Keywords: Activated carbon; Nanocomposites; Mn3O4; Saturation magnetization Abstract: Activated carbon-Mn3O4 nanocomposites have been prepared by in situ decomposition of metal carboxylates into activated carbon matrix using acetate and benzoate of manganese as precursor for metal oxide. The morphology and size of the Mn3O4 particles inserted into activated carbon matrix have been investigated by IR, XRD, Scanning electron microscope and Transmission electron microscope. The magnetic nature of composites has been investigated by Vibrating Sample Magnetometer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-186

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Bernard, A.H.L. Goff, B.V. Thi, J. Electrochem. Soc. 140 (1993) 3065.

Google Scholar

[2] E.R. Stobhe, B.A.D. Boer, J.W. Geus, catal. Today 47 (1999) 161.

Google Scholar

[3] Z.W. Chen, J.K.L. Lai and C.H. Shek, Scripta materialia 55 (2006) 735-738.

Google Scholar

[4] X. Hao, J. Zhao, Y. Li, Y. Zhao, D. Ma, L. Li, Colloids and Surfaces A: Physicochem, Eng. Aspects 374 (2011) 42-47

Google Scholar

[5] L.X. Yang, Y. Liang, H. Chen, Y. F. Meng, W. Jiang, Materials Research Bulletin 44 (2009) 1753 – 1759

Google Scholar

[6] Z. Durmus, A. Baykal, H. Kavas, M. Direkci, M.S. Toprak, Polyhedron, 28 (2009) 2119-2122

DOI: 10.1016/j.poly.2009.03.026

Google Scholar

[7] K.A.M. Ahmed, Q. Zeng, K. Wu, K. Huang, Journal of Solid State Chemistry, 183 (2010) 744-751

Google Scholar

[8] C. Huiqun, Z. Meifang, L. Yaogang, Journal of Solid State Chemistry, 179 (2006) 1208-1213

DOI: 10.1016/j.jssc.2005.12.040

Google Scholar

[9] C. Huiqun, Z. Meifang, L. Yaogang, J. Magn. Magn. Maer. 305 (2006) 321-324.

Google Scholar

[10] F. Tan, X. Fan, G. Zhang, F. Zhang, Materials letters, 61 (2007) 1805-1808.

Google Scholar

[11] Y. Xiong, J. Ye, X. Gu, Q. Chen, J. Magn. Magn. Maer. 320 (2008) 107-112.

Google Scholar

[12] C. Chen, J. Hu, D. Shao, J. Li, X. Wang, J. Hazardous Materials 164 (2009) 923-928.

Google Scholar

[13] C. C. Sheng, L. T. Gui, C. X. Hau, L. L. Wu, L.Q. Cheng, X. Quing, N.Z. Wu, Trans. Nonferrous Met. Soc. China 19 (2009) 1567-1571.

Google Scholar

[14] S. H. Chou, J. Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H.K. Liu, S.X. Dou, J. Mater. Chem., 20 (2010) 2092-2098

Google Scholar

[15] B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Electrochimica Acta 55 (2010) 6812-6817

Google Scholar

[16] A.I Vogel, Qualiltative Inorg. Analysis, III ed., London, 1961.

Google Scholar

[17] K. Nakamoto, Infrared and Raman spectra of Inorg. Coordination compounds, fourth ed., New York, 1986.

Google Scholar

[18] M. Ishii, M. Nakshira, Solid state Commun., 11 (1972) 209.

Google Scholar

[19] W. Wang, C. Xu, G. Wang, Y. Liu, C. Zheng, Adv. Mater. 14 (2002) 1369-1375.

Google Scholar

[20] F. A. Al Sagheer, M. A. Hasan, L. Pasupulety, M. I. Zaki, J. Mater. Sci. Lett. 18 (1999) 209-211

Google Scholar

[21] T. Ozkaya, A. Baykal, H. Kavas, Y. Koseogln, M. S. Toprak, Physica B 403 (2008) 3760-3764.

DOI: 10.1016/j.physb.2008.07.002

Google Scholar