Magnetic-Field-Dependent Effect on the Synthesis of Cu2O Crystals

Abstract:

Article Preview

The effect of magnetic field on the morphology and properties of Cu2O has been investigated by using a high magnetic field (B = 7 T) during the synthesis of Cu2O. Transmission electron microscopy (TEM) images showed that the variation of Cu2O crystal microstructures from nanospheres to nanoparticle-aggregates under the introduction of external magnetic field. And the optical band gap energy (Eg) of Cu2O was changed from 2.51 eV (nanospheres) to 2.27 eV (nanoparticle-aggregates). The effect of high magnetic field on the structure and properties is expected to be widely used to improve various crystals.

Info:

Periodical:

Edited by:

Junqiao Xiong

Pages:

121-125

Citation:

C. C. Kong et al., "Magnetic-Field-Dependent Effect on the Synthesis of Cu2O Crystals", Advanced Materials Research, Vol. 586, pp. 121-125, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] S.D. Sun, D.C. Deng, C.C. Kong, Y. Gao, S.C. Yang, X.P. Song, B.J. Ding, Z.M. Yang, Seed-mediated synthesis of polyhedral 50-facet Cu2O architectures, Crystengcomm 13 (2011) 5593-5597.

DOI: https://doi.org/10.1039/c1ce05243h

[2] H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties, Adv. Funct. Mater. 17 (2007) 2766-2771.

DOI: https://doi.org/10.1002/adfm.200601146

[3] X. W. Lou, Z. Y. Wang, D. Y. Luan, C. M. Li, F. B. Su, S. Madhavi and F. Y. C. Boey, Engineering Nonspherical Hollow Structures with Complex Interiors by Template-Engaged Redox Etching, J. Am. Chem. Soc. 132 (2010) 16271-16277.

DOI: https://doi.org/10.1021/ja107871r

[4] M. Leng, M.Z. Liu, Y.B. Zhang, Z.Q. Wang, C. Yu, X.G. Yang, H.J. Zhang, C. Wang, Polyhedral 50-Facet Cu2O Microcrystals Partially Enclosed by {311} High-Index Planes: Synthesis and Enhanced Catalytic CO Oxidation Activity, J. Am. Chem. Soc. 132 (2010).

DOI: https://doi.org/10.1021/ja106788x

[5] J. Ren, W. Wang, S. Sun, L. Zhang, L. Wang, J. Chang, Crystallography Facet-Dependent Antibacterial Activity: The Case of Cu2O, Ind. Eng. Chem. Res. 50 (2011) 10366-10369.

DOI: https://doi.org/10.1021/ie2005466

[6] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.

DOI: https://doi.org/10.1002/chin.200103013

[7] W. Z. Wang, G. H. Wang, X. S. Wang, Y. J. Zhan, Y. K. Liu, C. L. Zheng, Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route, Adv. Mater, 14 (2002) 67-69.

DOI: https://doi.org/10.1002/1521-4095(20020104)14:1<67::aid-adma67>3.0.co;2-z

[8] C. -H. Kuo, M. H. Huang, Fabrication of Truncated Rhombic Dodecahedral Cu2O Nanocages and Nanoframes by Particle Aggregation and Acidic Etching, J. Am. Chem. Soc. 130 (2008) 12815-12820.

DOI: https://doi.org/10.1021/ja804625s

[9] J.S. Xu, D.F. Xue, Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals, Acta Materialia, 55 (2007) 2397-2406.

DOI: https://doi.org/10.1016/j.actamat.2006.11.032

[10] Y. Chang, J. J. Teo, H. C. Zeng, Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres, Langmuir, 21 (2005) 1074-1079.

DOI: https://doi.org/10.1021/la047671l

[11] S.D. Sun, F.Y. Zhou, L.Q. Wang, X. P. Song, Z.M. Yang, Template-Free Synthesis of Well-Defined Truncated Edge Polyhedral Cu2O Architectures, Cryst. Growth Des. 10 (2010) 541-547.

DOI: https://doi.org/10.1021/cg900756u

[12] S.D. Sun, C.C. Kong, S.C. Yang, L.Q. Wang, X.P. Song, B.J. Ding, Z.M. Yang, Highly symmetric polyhedral Cu2O crystals with controllable-index planes, Crystengcomm 13 (2011) 2217-2221.

DOI: https://doi.org/10.1039/c0ce00679c

[13] S.D. Sun, H. Zhang, X.P. Song, S.H. Liang, C.C. Kong, Zhimao Yang, Polyhedron-aggregated multi-facet Cu2O homogeneous structures, Crystengcomm, 13 (2011) 6040-6044.

DOI: https://doi.org/10.1039/c1ce05597f

[14] G. Hinds, F. E. Spada, J. M. D. Coey, T. R. Ní Mhíocháin, M. E. G. Lyons, Magnetic Field Effects on Copper Electrolysis, J. Phys. Chem. B 105 (2001), 9487-9502.

DOI: https://doi.org/10.1021/jp010581u

[15] O. Lioubashevski, E. Katz, I. Willner, Magnetic Field Effects on Electrochemical Processes:  A Theoretical Hydrodynamic Model, J. Phys. Chem. B 108 (2004) 5778-5784.

DOI: https://doi.org/10.1021/jp037785q

[16] A. Bund, H. H. Kuehnlein, Role of Magnetic Forces in Electrochemical Reactions at Microstructures, J. Phys. Chem. B 109 (2005) 19845-19850.

DOI: https://doi.org/10.1021/jp053341d

[17] S.D. Sun, D.C. Deng, C.C. Kong, Y.X. Zhang, X.P. Song, B.J. Ding, Z.M. Yang, Magnetic field driven assembly of 1D-aligned silver superstructures, Crystengcomm, 13 (2011) 4827-4830.

DOI: https://doi.org/10.1039/c1ce05367a

[18] A.L. Daltin, A. Addad, P. Baudart, J.P. Chopart, Morphology of magneto-electrodeposited Cu2O microcrystals, Crystengcomm, 13 (2011) 3373-3377.

DOI: https://doi.org/10.1039/c0ce00691b

[19] A.L. Daltin, J.P. Chopart, Microcrystals Electrodeposited in a High Magnetic Field, Cryst. Growth Des. 10 (2010) 2267-2271.

DOI: https://doi.org/10.1021/cg901582j

[20] Y. Chang, H. C. Zeng, Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals, Cryst. Growth Des. 4 (2004) 273-278.

DOI: https://doi.org/10.1021/cg034146w