[1]
S.D. Sun, D.C. Deng, C.C. Kong, Y. Gao, S.C. Yang, X.P. Song, B.J. Ding, Z.M. Yang, Seed-mediated synthesis of polyhedral 50-facet Cu2O architectures, Crystengcomm 13 (2011) 5593-5597.
DOI: 10.1039/c1ce05243h
Google Scholar
[2]
H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties, Adv. Funct. Mater. 17 (2007) 2766-2771.
DOI: 10.1002/adfm.200601146
Google Scholar
[3]
X. W. Lou, Z. Y. Wang, D. Y. Luan, C. M. Li, F. B. Su, S. Madhavi and F. Y. C. Boey, Engineering Nonspherical Hollow Structures with Complex Interiors by Template-Engaged Redox Etching, J. Am. Chem. Soc. 132 (2010) 16271-16277.
DOI: 10.1021/ja107871r
Google Scholar
[4]
M. Leng, M.Z. Liu, Y.B. Zhang, Z.Q. Wang, C. Yu, X.G. Yang, H.J. Zhang, C. Wang, Polyhedral 50-Facet Cu2O Microcrystals Partially Enclosed by {311} High-Index Planes: Synthesis and Enhanced Catalytic CO Oxidation Activity, J. Am. Chem. Soc. 132 (2010).
DOI: 10.1021/ja106788x
Google Scholar
[5]
J. Ren, W. Wang, S. Sun, L. Zhang, L. Wang, J. Chang, Crystallography Facet-Dependent Antibacterial Activity: The Case of Cu2O, Ind. Eng. Chem. Res. 50 (2011) 10366-10369.
DOI: 10.1021/ie2005466
Google Scholar
[6]
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature 407 (2000) 496-499.
DOI: 10.1038/35035045
Google Scholar
[7]
W. Z. Wang, G. H. Wang, X. S. Wang, Y. J. Zhan, Y. K. Liu, C. L. Zheng, Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route, Adv. Mater, 14 (2002) 67-69.
DOI: 10.1002/1521-4095(20020104)14:1<67::aid-adma67>3.0.co;2-z
Google Scholar
[8]
C. -H. Kuo, M. H. Huang, Fabrication of Truncated Rhombic Dodecahedral Cu2O Nanocages and Nanoframes by Particle Aggregation and Acidic Etching, J. Am. Chem. Soc. 130 (2008) 12815-12820.
DOI: 10.1021/ja804625s
Google Scholar
[9]
J.S. Xu, D.F. Xue, Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals, Acta Materialia, 55 (2007) 2397-2406.
DOI: 10.1016/j.actamat.2006.11.032
Google Scholar
[10]
Y. Chang, J. J. Teo, H. C. Zeng, Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres, Langmuir, 21 (2005) 1074-1079.
DOI: 10.1021/la047671l
Google Scholar
[11]
S.D. Sun, F.Y. Zhou, L.Q. Wang, X. P. Song, Z.M. Yang, Template-Free Synthesis of Well-Defined Truncated Edge Polyhedral Cu2O Architectures, Cryst. Growth Des. 10 (2010) 541-547.
DOI: 10.1021/cg900756u
Google Scholar
[12]
S.D. Sun, C.C. Kong, S.C. Yang, L.Q. Wang, X.P. Song, B.J. Ding, Z.M. Yang, Highly symmetric polyhedral Cu2O crystals with controllable-index planes, Crystengcomm 13 (2011) 2217-2221.
DOI: 10.1039/c0ce00679c
Google Scholar
[13]
S.D. Sun, H. Zhang, X.P. Song, S.H. Liang, C.C. Kong, Zhimao Yang, Polyhedron-aggregated multi-facet Cu2O homogeneous structures, Crystengcomm, 13 (2011) 6040-6044.
DOI: 10.1039/c1ce05597f
Google Scholar
[14]
G. Hinds, F. E. Spada, J. M. D. Coey, T. R. Ní Mhíocháin, M. E. G. Lyons, Magnetic Field Effects on Copper Electrolysis, J. Phys. Chem. B 105 (2001), 9487-9502.
DOI: 10.1021/jp010581u
Google Scholar
[15]
O. Lioubashevski, E. Katz, I. Willner, Magnetic Field Effects on Electrochemical Processes: A Theoretical Hydrodynamic Model, J. Phys. Chem. B 108 (2004) 5778-5784.
DOI: 10.1021/jp037785q
Google Scholar
[16]
A. Bund, H. H. Kuehnlein, Role of Magnetic Forces in Electrochemical Reactions at Microstructures, J. Phys. Chem. B 109 (2005) 19845-19850.
DOI: 10.1021/jp053341d
Google Scholar
[17]
S.D. Sun, D.C. Deng, C.C. Kong, Y.X. Zhang, X.P. Song, B.J. Ding, Z.M. Yang, Magnetic field driven assembly of 1D-aligned silver superstructures, Crystengcomm, 13 (2011) 4827-4830.
DOI: 10.1039/c1ce05367a
Google Scholar
[18]
A.L. Daltin, A. Addad, P. Baudart, J.P. Chopart, Morphology of magneto-electrodeposited Cu2O microcrystals, Crystengcomm, 13 (2011) 3373-3377.
DOI: 10.1039/c0ce00691b
Google Scholar
[19]
A.L. Daltin, J.P. Chopart, Microcrystals Electrodeposited in a High Magnetic Field, Cryst. Growth Des. 10 (2010) 2267-2271.
DOI: 10.1021/cg901582j
Google Scholar
[20]
Y. Chang, H. C. Zeng, Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals, Cryst. Growth Des. 4 (2004) 273-278.
DOI: 10.1021/cg034146w.s001
Google Scholar