Preparation and Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg20Ni8M2 (M=Cu, Co) Alloys

Abstract:

Article Preview

In order to obtain a nanocrystalline and amorphous structure, the Mg20Ni8M2 (M=Cu, Co) hydrogen storage alloys were fabricated by the melt spinning technology. The microstructures of the alloys were characterized by XRD, SEM and HRTEM. The effects of the melt spinning on the hydriding and dehydriding kinetics of the alloys were investigated. The results indicate that the as-spun (M=Cu) alloys hold an entire nanocrystalline structure even if the limited spinning rate is applied, while the as-spun (M=Co) alloys display a nanocrystalline and amorphous structure as the spinning rate grows to 30 m/s, suggesting that the substitution of Co for Ni facilitates the glass formation in the Mg2Ni-type alloy. The melt spinning remarkably improves the gaseous hydriding and dehydriding kinetics of the alloys. As the spinning rate grows from 0 (As-cast was defined as the spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio ( ) is enhanced from 56.72% to 92.74% for the (M=Cu) alloy and from 80.43% to 94.38% for the (M=Co) alloy. The hydrogen desorption ratio ( ) is raised from14.89% to 40.37% for the (M=Cu) alloy and from 24.52% to 51.67% for the (M=Co) alloy.

Info:

Periodical:

Edited by:

Junqiao Xiong

Pages:

50-57

Citation:

Y. H. Zhang et al., "Preparation and Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg20Ni8M2 (M=Cu, Co) Alloys", Advanced Materials Research, Vol. 586, pp. 50-57, 2012

Online since:

November 2012

Export:

Price:

$38.00

[1] D. Das, and T. N. Veziroglu, Int. J. Hydrogen Energy 26, 13 (2001).

[2] O. M. Løvvik, Int. J. Hydrogen Energy 34, 2679 (2009).

[3] H. Niu, and D. O. Northwood, Int. J. Hydrogen Energy 27, 69 (2002).

[4] S. Mokbli, M. Abdellaoui, H. Zarrouk, M. Latroche, and A. Percheron Guégan, J. Alloys Compod. 460, 432 (2008).

[5] S. I. Yamaura, H. Y. Kim, H. Kimura, A. Inoue, and Y. Arata, J. Alloys Compd. 339, 230 (2002).

[6] H.S. Chen, Acta Metall. 22, 1505 (1974).

[7] T. Spassov, and U. Köster, J. Alloys Compd. 279, 279 (1998).

[8] L. J. Huang, G. Y. Liang, Z. B. Sun, and D. C. Wu, J. Power Sources 160, 684 (2006).

[9] S. I. Yamaura, H. Y. Kim, H. Kimura, A. Inoue, and Y. Arata, J. Alloys Compd, 339, 230 (2002).

[10] Y. Wu, W. Han, S. X. Zhou, M. V. Lototsky, J. K. Solberg, and V. A. Yartys, J. Alloys Compd. 466, 176 (2008).

[11] A. Zaluska, L. Zaluski, and J. O. Ström-Olsen, J. Alloys Compd. 289 197 (1999).

[12] G. Zheng, B. N. Popov, and R. E. White, J. Electrochem. Soc. 142, 2695 (1995).