A New Way of Ultra-Wideband Channel Estimation Based on Bayesian Compressive Sensing

Article Preview

Abstract:

In this paper, in order to solve the problem that the sampling rate in ultra-wideband (UWB) channel estimation is too high, we discuss the applicability of Bayesian Compressive Sensing (BCS) used in UWB channel estimation. We solve the problem by using the time domain sparse of the impulse response of the UWB channel and establishing the probability model of the Compressive Sensing (CS) measurement. We accomplish the channel estimation by optimizing maximum a posteriori (MAP) of the channel. The simulation results show that the proposed scheme needs a very low sampling rate to recover the channel accurately. And the BCS algorithm has a better performance than the basis pursuit (BP) algorithm and the traditional least square (LS) algorithm in bit error rate (BER).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 591-593)

Pages:

1334-1337

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Porcino and W. Hirt,: IEEE Communication Magazine, Vol. 41(2003) No. 7, p.66.

Google Scholar

[2] L. Yang and G. B. Giannakis: IEEE Signal Processing Magazine., Vol. 21 (2004) No. 6, p.26.

Google Scholar

[3] M. Michele and M. Umberto: IEEE Trans. On Signal Processing, Vol. 49(2001) No. 12, p.3065.

Google Scholar

[4] V. Lottici, A. Andrea and U. Mengali: IEEE Journal on Selected Areas in Communications, Vol. 20(2002) No. 9, p.1638.

Google Scholar

[5] J.L. Paredes, G. R. Arce, and Z. Wang: IEEE J. Select. Topics Signal Processing, Vol. 1(2007) No. 3, p.383.

Google Scholar

[6] E.J. Candes, J. Romberg and T. Tao: IEEE Transactions On Information Theory, Vol. 52 (2006) No. 2, p.489.

Google Scholar

[7] D.L. Donoho: IEEE Transactions on Information Theory, Vol. 52(2006) No. 4, p.1289.

Google Scholar

[8] R. Baraniuk: IEEE Signal Processing Magazine, Vol. 24 (2007) No. 4, p.118.

Google Scholar

[9] Z. Wang, G. R. Arce, J. L. Paredes and B. M. Sadler: Proc. IEEE 8th Workshop on Signal Processing Advances in Wireless Communications, (June 17-20, 2007). p.1.

DOI: 10.1109/spawc.2007.4401384

Google Scholar

[10] S. Ji, Y. Xue and L. Carin: IEEE Transactions on Signal processing, Vol. 56 (2008) No. 6, p.2346.

Google Scholar

[11] R. Brarniuk, M. Davenport, R. DeVore and M. Wakin: Constructive Approximation, Vol. 28 (2008) No. 3, p.253.

Google Scholar

[12] S. S. Chen, D. L. Donoho, and M. A. Saunders: SIAM Review, Vol. 43 (2001) No. 1, p.129.

Google Scholar

[13] J. A. Tropp and A. C. Glibert: IEEE Transactions on Information Theory, Vol. 53(2007)No. 12, p.4655.

Google Scholar

[14] M. E. Tipping: Journal of Machine Learning Research, Vol. 1 (2001), p.211.

Google Scholar