Hydrophilic/Hydrophobic Behavior on Ti Foil Surface Prepared by Anodization

Article Preview

Abstract:

Hydrophilic/hydrophobic behavior on Ti foil surface prepared during anodization process was examined. The titanium foils were anodized in electrolyte contained 0.25wt% NH4F, 2.5vol% water and the ethylene glycol under direct voltage of 40V at room temperature for 3h. The anodized specimens were oscillated in ultrasonic clearer for 10 min or 30 min. The surface morphologies of the specimens during different stages of the process were observed by field-emission scanning electron microscopy (FESEM). The wettability of specimen surface was estimated by measuring contact angle (CA) of water droplets on specimen surface. The results show wetting angle on the surface of the Ti specimens after anodization process is at the range of 149° to 153°, indicating hydrophobic or even superhydrophobic property. CAs on the anodized specimens after oscillation in ultrasonic clearer is at the range of 25° to 42°, indicating the hydrophilic property. Hydrophilic/hydrophobic behavior on Ti foil surface during the process was explained by morphology on titanium surface.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

1659-1662

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kim, K. Noh, C. Choi, J. Khamwannah, D. Villwock and S. Jin: Langmuir 27 (2011), p.10191.

DOI: 10.1021/la2014978

Google Scholar

[2] D. Wang, X. Wang, X. Liu and F. Zhou: J. Phys. Chem. C 114 (2010) p.9938.

Google Scholar

[3] R. Jagdheesh, B. Pathiraj, E. Karatay, G. R. B. E. Romer and A. J. Huis: |Langmuir 27 (2011) p.8464.

Google Scholar

[4] H.P. Jennissen1 and S. Luers: Materialwissenschaft und Werkstofftechnik 41 (2010) p.1062.

Google Scholar

[5] K. Nakata, S. Nishimoto, Y. Yuda, T. Ochiai, T. Murakami and A. Fujishima: Langmuir 26 (2010) p.11628.

DOI: 10.1021/la101947y

Google Scholar

[6] A. F. Feil, D. E. Weibel, R. R. Corsetti, M. D. Pierozan, A. F. Michels, F. Horowitz, L. Amaral and S. R. Teixeira: ACS Appl. Mater. Interfaces 3 (2011) p.3981.

DOI: 10.1021/am200854r

Google Scholar

[7] M. Paulose, H. E. Prakasam, O. K. Varghese: Phys. Chem. C 111 (2007) p.14992.

Google Scholar

[8] J. Wang, L. Zhao, S. Y. Lin, Z. Q. Lin: J. Mater. Chem. 19 (2009) p.3682.

Google Scholar

[9] C. C. Chen, H. W. Chung, C. H. Chen: J. Phys. Chem. C 112 (2008) p.19151.

Google Scholar

[10] H. Xu, Q. Zhang, C. L. Zheng: Appl. Surf. Sci. 257 (2011) p.8478.

Google Scholar

[11] A. M. Gaudin, Flotation, (McGraw-Hill Book Company, Inc, New York, 1957).

Google Scholar

[12] M. Agrawal, S. Gupta and M. Stamm: J. Mater. Chem. (21) 2011 p.615.

Google Scholar

[13] C. T. Hsieh, W.Y. Chen, F. L. Wu: Carbon 46 (2008) p.1218.

Google Scholar

[14] A. B. D. Cassie: Trans Faraday Soc, 40 (1944) p.546.

Google Scholar