[1]
Jin,Y., Ishino,Y. DAKA: Design activity knowledge acquisition through data mining. International Journal of Production Research, 44(15), 2813-2837. (2006)
DOI: 10.1080/00207540600654533
Google Scholar
[2]
Kim, P., Ding, Y. Optimal engineering system design guided by data-mining methods. Technometrics, 47(3), 336-348. (2005)
DOI: 10.1198/004017005000000157
Google Scholar
[3]
Romanowski, C.J., Nagi, R. A data mining for knowledge acquisition in engineering design: A research agenda. In D.Braha (Ed.), Data mining for design and manufacture: Methods and Applications, Dordrecht: Kluwer Academic Publisher, pp.161-178 (2001)
DOI: 10.1007/978-1-4757-4911-3_7
Google Scholar
[4]
Romanowski, C.J., Nagi, R.A data mining approach to forming generic bills of material in support of variant design activities. ASME Journal of Computing and Information Science in Engineering, 4(4), 316-328 (2004)
DOI: 10.1115/1.1812556
Google Scholar
[5]
Neaga, E.I., &Harding, J.A. An enterprise modeling and integration framework based on knowledge discovery and data mining. International Journal of Production Research, 43(6), 1089-1108 (2005)
DOI: 10.1080/00207540412331322939
Google Scholar
[6]
Chen, N., Zhu, D.D., &Wang, W. Intelligent material processing by hyper space data mining. Engineering applications of artificial intelligence, 13, 527-532 (2000)
DOI: 10.1016/s0952-1976(00)00032-4
Google Scholar
[7]
Holden. T., Serearuno, M. A hybrid artificial intelligence approach for improving yield in precious stone manufacturing. Journal of Intelligent Manufacturing, 16, 21-38 (2005)
DOI: 10.1007/s10845-005-4822-8
Google Scholar
[8]
Gertosio, C., Dussauchoy, A. Knowledge discovery from industrial databases. Journal of Intelligent Manufacturing, 15, 29-37 (2004)
DOI: 10.1023/b:jims.0000010073.54241.e7
Google Scholar
[9]
Yin, Z.L,, Pheng, K.L., &Cheong, F.S. Derivation of decision rules for the evaluation of product performance using generic algorithms and rough set theory. Data mining for design and manufacturing: Methods and Applications, D.Braha, ed., Kluwer Academic, Dordrecht, pp.337-353
DOI: 10.1007/978-1-4757-4911-3_14
Google Scholar
[10]
Horng, S.C., Lin, S.Y. A hybrid classification tree for products of complicated machines in flexible manufacturing system. IEEE International Conference on System Man and Cybernetics, 4, 3775-3780 (2004)
DOI: 10.1109/icsmc.2005.1571734
Google Scholar
[11]
Kusiak, A. Feature transformation methods in data mining. IEEE Transactions on Electronics packaging manufacturing, 24(3), 214-221 (2001)
DOI: 10.1109/6104.956807
Google Scholar
[12]
Kusiak, A. Decomposition in data mining: An industrial case study. IEEE Transactions on Electronics packaging manufacturing, 23(4), 345-353 (2000)
DOI: 10.1109/6104.895081
Google Scholar
[13]
Kusiak, A. Rough set theory: a data mining tool for semiconductor manufacturing. IEEE Transactions on Electronics Packaging Manufacturing, 24(1), 44-50 (2001)
DOI: 10.1109/6104.924792
Google Scholar
[14]
Giess, M.D., Culley, S.J. Investigating manufacturing data for use within design. ICED 03, Stockholm, Sweden, pp.1408-1413 (2003)
Google Scholar
[15]
Ho, G.T.S, Lau, H.C.W., Lee, C.K.M., Ip, A.W.H., &Pun, K.F. An intelligent production workflow mining system for continual quality enhancement. International Journal of Advanced Manufacturing Technology, 28, 792-809 (2006)
DOI: 10.1007/s00170-004-2416-9
Google Scholar