Photoreactive Carbon and Nitrogen-Codoped ZnWO4 Nanoparticles: Synthesis and Reactivity

Article Preview

Abstract:

In order to improve ZnWO4 photocatalytic activity under visible light, the C, N-codoped ZnWO4 nanoparticles have been successfully synthesized by choosing C3N4 generated from tripolycyanamide pyrolysis as the source of Carbon and Nitrogen and the influence of C3N4 concentration on structural, optical and morphological properties of C, N-codoped ZnWO4 using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscopy (SEM) and photocatalytic decoloration of rhodamine B (RhB) aqueous solution under visible light. It was found that the presence of carbon and nitrogen could not improve the crystallization of ZnWO4 species but could enhance their photoabsorption property in the visible region. The results also showed that the photocatalytic activity of the as-prepared ZnWO4 is higher than that of pure ZnWO4 with the optimum effect occurring at RC3N4 = 9 % (the weight ratio of tripolycyanamide to ZnWO4)

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-177

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. D. Burrows, M. Canle L, J. A. Santaballa, S. Steenken, Reaction pathways and mechanisms of photodegradation of pestidides, J. Photochem. Photobiol. B: Biology 67 (2002) 71-108.

DOI: 10.1016/s1011-1344(02)00277-4

Google Scholar

[2] Y. Jing, L. Li, Q. Zhang, P. Lu, P. Liu, X. Lü, Photocatalytic ozonation of dimethyl phthalate with TiO2 prepared by a hydrothermal method, J. Hazard. Mater. 189 (2011) 40-47.

DOI: 10.1016/j.jhazmat.2011.01.132

Google Scholar

[3] S. H. Yu, B. Liu, M. S. Mo, et al, General synthesis of single-crystal tungstate nanorods/ nanowires: A facile, low-temperature solution approach, Adv. Funct. Mater. 13 (2003) 639-647.

DOI: 10.1002/adfm.200304373

Google Scholar

[4] X. Cao, W. Wu, N. Chen, Y. Peng, Y. Liu, An ether sensor utilizing cataluminescence on nanosized ZnWO4, Sensor Actuat B: Chem. 137 (2009) 83-87.

DOI: 10.1016/j.snb.2008.11.020

Google Scholar

[5] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev. 41 (2012) 782-796.

DOI: 10.1039/c1cs15172j

Google Scholar

[6] D. Chen, Z. Y. Jiang, J. Q. Geng, et al., Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, Ind. Eng. Chem. Res. 46 (2007) 2741-2746.

DOI: 10.1021/ie061491k

Google Scholar

[7] H. Fu, J. Lin, L. Zhang, Y. Zhu, Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process, Appl. Catal. A: Gen. 306 (2006) 58-67.

DOI: 10.1016/j.apcata.2006.03.040

Google Scholar

[8] X. C. Song, Y. F. Zheng, E. Yang, G. Liu, Y. Zhang, H. F. Chen, Y. Y. Zhang, Photocatalytic activities of Cd-doped ZnWO4 nanorods prepared by a hydrothermal process, J. Hazard. Mater. 179 (2010) 1122-1127.

DOI: 10.1016/j.jhazmat.2010.03.123

Google Scholar

[9] J. A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, N. C. Castillo, J. Kiwi, C. Pulgarin, Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl. Catal. B: Environ. 84 (2008) 448-456.

DOI: 10.1016/j.apcatb.2008.04.030

Google Scholar

[10] G. Williams, B. Seger, P. V. Kamat, TiO2-graphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide, ACS Nano. 2 (2008) 1487-1491.

DOI: 10.1021/nn800251f

Google Scholar

[11] Y. Cong, F. Chen, J. Zhang, et al., Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity, Chem. Lett. 35 (2006) 800.

DOI: 10.1246/cl.2006.800

Google Scholar

[12] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J. R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorted graphene nanosheets, J. Am. Chem. Soc. 133 (2011) 10878-10884.

DOI: 10.1021/ja2025454

Google Scholar