The Effect of Growth Time on the Morphology of ZnO Nanorods by Hydrothermal Method

Article Preview

Abstract:

ZnO nanorod arrays were synthesized by hydrothermal method under different growth times. The effect of growth time on nanorods morphology was investigated systematically. Results illustrate that ZnO nanorods with hexagonal wurtzite structure grow vertically on the Si substrates. The length of the ZnO nanorods increases with increasing growth time. In our experiments, quenching stage plays a key role in forming the tips of nanorods. With growth time no more than 1h, the solution is in a continuous heating state and doesn’t reach the set temperature 180oC. Therefore, longer growth time means higher solution temperature which in turn increases cooling rate during quenching stage, as a consequence, to a smaller mean crystal size in the nanorods tips.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

855-859

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi: Chem. Phys. Lett. Vol. 309 (1999), p.165.

DOI: 10.1016/s0009-2614(99)00642-9

Google Scholar

[2] D. Look: Mater. Sci. Eng., B Vol. 80 (2001), p.383.

Google Scholar

[3] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.J. Choi: Adv. Funct. Mater. Vol. 12 (2002), p.323.

DOI: 10.1002/1616-3028(20020517)12:5<323::aid-adfm323>3.0.co;2-g

Google Scholar

[4] G.C. Yi, C. Wang and W.I. Park: Semicond. Sci. Technol. Vol. 20 (2005), p. S22.

Google Scholar

[5] T. Shiono, H. Yamamoto and S. Nishino: Jpn. J. Appl. Phys. Vol. 43 (2004), p.4941.

Google Scholar

[6] J.J. Chen, Y. Gao, F. Zeng, D. Li and F. Pan: Appl. Surf. Sci. Vol. 223 (2004), p.318.

Google Scholar

[7] H. Sato, T. Minami, T. Miyata, S. Takata and M. Ishii: Thin Solid Films. Vol. 246 (1994), p.65.

Google Scholar

[8] A. Jimenez-Gonzalez, J.A. Soto Urueta and R. Suarez-Parra: J. Cryst. Growth Vol. 192 (1998), p.430.

Google Scholar

[9] Y. Chen, D. Bagnall, Z. Zhu, T. Sekiuchi, K. Park, K. Hiraga, T. Yao, S. Koyama, M. Shen and T. Goto: J. Cryst. Growth Vol. 181 (1997), p.165.

DOI: 10.1016/s0022-0248(97)00286-8

Google Scholar

[10] S.P. Garcia and S. Semancik: Chem. Mater. Vol. 19 (2007), p.4016.

Google Scholar

[11] L.P. Bauermann, A. del Campo, J. Bill and F. Aldinger: Chem. Mater. Vol. 18 (2006), p. (2016).

Google Scholar

[12] L. Jia, W. Cai, H. Wang and H. Zeng: Cryst. Growth Des. Vol. 8 (2008), p.4367.

Google Scholar

[13] M. Guo, P. Diao, X. Wang and S. Cai: J. Solid State Chem. Vol. 178 (2005), p.3210.

Google Scholar

[14] J.H. Kim, E.M. Kim, D. Andeen, D. Thomson, S.P. DenBaars and F.F. Lange: Adv. Funct. Mater. Vol. 17 (2007), p.463.

Google Scholar

[15] M. Guo, P. Diao and S. Cai: J. Solid State Chem. Vol. 178 (2005), p.1864.

Google Scholar

[16] Z. Luo, H. Li, H. Shu, K. Wang, J. Xia and Y. Yan: Cryst. Growth Des. Vol. 8 (2008), p.2275.

Google Scholar

[17] G. Xi, K. Xiong, Q. Zhao, R. Zhang, H. Zhang and Y. Qian: Cryst. Growth Des. Vol. 6 (2006), p.577.

Google Scholar