Migration of Silicon from Nanocomposite Packaging Materials into Acidic Food Simulant

Article Preview

Abstract:

PET/Clay nanocomposites were prepared by the melt blending of PET and 3% wt. closite20A nanoparticles. The stretch blow molding machine was used to produce bottles from neat PET and PET nanocomposite. Migration of silicon from PET nanocomposite bottles into acidic food simulnat was studied at two storage temperatures (25°C and 45°C) in different time intervals from 7 to 70 days. A specific surface of sheets (prepared from PET/clay nanocomposite) immersed in acidic food simulnat and two-sided migration of silicon investigated. Using XRD analysis and TEM micrographs displayed both intercalation and exfoliation morphology for PET/clay nanocomposites. Inductive coupled plasma (ICP) used to quantify the amount of Silicon migrated into acidic food simulnat. It was observed that the migration process is depended on the storage time and temperature as well as the morphology of nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

873-877

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Lange and Y. Wyser: Packag. Tech. Sci. Vol. 16 (2003), p.149.

Google Scholar

[2] C. I. Moraru, C. P. Panchapakesan, Q. Huang, P. Takhistov, S. Liu and J. L. Kokini: Food. Tech. Vol. 57 (2003), p.24.

Google Scholar

[3] A. Ranade, N.A. D'Souza, B. Gnade and A. Dharia: J. Plast. Film. Sheet. Vol. 19 (2003), p.271.

Google Scholar

[4] M. Avella, J. J. De Vlieger, M. E. Errico, S. Fischer, P. Vacca and M. G. Volpe: Food. Chem. Vol. 93 (2005), p.467.

DOI: 10.1016/j.foodchem.2004.10.024

Google Scholar

[5] Y. Huang, S. Chen, X. Bing, C. Gao, T. Wang and B. Yuan: Packag. Tech. Sci. Vol. 24 (2011), p.291.

Google Scholar

[6] P. Y. Pennarun, P. Dole and A. Feigenbaum: J. Appl. Polym. Sci. Vol. 92 (2004), p.2845.

Google Scholar

[7] H. Widén, A. Leufvén and T. Nielsen: Food Addit. Contam. Vol. 21 (2004), p.993.

Google Scholar

[8] M. Farhoodi, Z. Emam-Djomeh, M. R. Ehsani and A. Oromiehie: e-Polymers. 037 (2008), p.1.

Google Scholar

[9] F. Welle and R. Franz: Polym. Test. Vol. 31 (2012), p.93.

Google Scholar

[10] M. L. Chan, K. T. Lau, T. T. Wong and F. Cardona: Appl. Surf. Sci. Vol. 258 (2011), p.860.

Google Scholar

[11] EEC Regulations. Council Directive 85/572/EEC (1985).

Google Scholar

[12] ASTM Standard D4754, West Conshohocken, PA 19428-2959, United States, (2003).

Google Scholar

[13] A. Vermogen, K. Masenelli-Varlot, R. Séguéla, J. Duchet-Rumeau, S. Boucard and P. Prele: Macromolecules. Vol. 38 (2005), p.9661.

DOI: 10.1021/ma051249+

Google Scholar

[14] K. Masenelli-Varlot, G. Vigier, A. Vermogen, C. Gauthier and J. Y. Cavaillé: J. Polym. Sci. Part B: Polym. Phys. Vol. 45 (2007), p.1243.

DOI: 10.1002/polb.21186

Google Scholar

[15] K. H. Soon, E. Harkin-Jones, R.S. Rajeev, G. Menary, T. McNally, P.J. Martin and C. Armstrong: Polym. Int. Vol. 58 (2009), p.1134.

DOI: 10.1002/pi.2641

Google Scholar

[16] F. L. Mi, Y. B. Wu, S. S. Shyu, A. C. Chao, J. Y. Lai and C. C. Su: J. membrane sci. Vol. 212 (2003), p.237.

Google Scholar