N-Loaded TiO2 for Photocatalytic Degradation of Methyl Orange under Visible Light Irradiation

Article Preview

Abstract:

Nitrogen-loaded TiO2 (N-loaded TiO2), a visible-light driven catalyst, was successfully synthesized by the modified sol-gel method. Physical characterizations of the as-prepared catalysts have been performed by using X-ray diffraction (XRD), Diffuse reflectance UVvisspectroscopy(DRUVvis), Raman spectroscopyand BETspecific surface areain order to obtain structure-activity relationship. Results from Raman spectroscopy clearly suggested that N atoms were incorporated into the TiO2 crystal lattice as evidenced by the vibrational peak of TiN in TiO2-xNx.DR UVvis results also suggested that the nitrogen dopant might be responsible for narrowing the TiO2band gap energy, thus resulting in a shift towards the visiblelight region. Photocatalytic activity of N-loaded TiO2 evaluated through the degradation of methyl orange (MO)under visible light irradiation (l> 400 nm) indicated that all N-loaded photocatalysts exhibited significantly higher activities than the unloaded TiO2 and Degussa P25 TiO2. According to the results from DR UV-vis, XRD and BET studies, the enhanced photoactivity observed from N-loaded samples might be due to a decrease in TiO2 band gap energy and/or changes in chemical and physical properties of the materials upon loading with nitrogen.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

883-888

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R. Hofmann, S.T. Martin, W. Choi and D.W. Bahnemann: Chem. Rev. Vol. 95 (1995), p.69.

Google Scholar

[2] F. Fresno, C. Guillard and J. Coronado: J. Photochem. Photobio. A Vol. 173 (2005), p.119.

Google Scholar

[3] A. Zaleska: Recent Pat. Eng. Vol. 2 (2008) p.157.

Google Scholar

[4] G. Yang, Z. Jiang, H. Shi, T. Xiao and Z. Yan: J. Mater. Chem. Vol. 20 (2010), p.5301.

Google Scholar

[5] J. Ananpattarachai and P. Kajitvichyanukul: J. Hazard. Mater., Vol. 168 (2009), p.253.

Google Scholar

[6] X. Zhang and L. Lei: J. Hazard. Mater. Vol. 153 (2008), p.827.

Google Scholar

[7] N. Wetchakul and S. Phanichahant: Curr. Appl. Phys. Vol. 8 (2008), p.343.

Google Scholar

[8] G. Cao and Y. Wang: Nanostructures and Nanomaterials; Synthesis, Properties and Applications, Vol. 2 (World Scientific Publishing Co. Pte. Ltd., Singapore 2011).

Google Scholar

[9] J. Lin, Y. Lin, P. Liu, M.J. Meziani, L.F. Allard and Y. -P. Sun: J. Am. Chem. Soc. Vol. 124 (2002), p.11514.

Google Scholar

[10] Y. Cong, J. Zhang, F. Chen and M. Anpo: J. Phys. Chem. C Vol. 111 (2007), p.6976.

Google Scholar

[11] M. D'Arienzo, R. Scotti, L. Wahba, C. Battocchio, E. Bemporad, A. Nale, F. Morazzoni: Appl. Catal. B: Environ. Vol. 93 (2009), p.149.

Google Scholar

[12] H. Li, J. Li and Y. Huo: J. Phys. Chem. B Vol. 110 (2006), p.1559.

Google Scholar

[13] A. Fernández, G. Lassaletta, V.M. Jiménez, A.R. González-Elipe, J.M. Jerrmann, H. Tahiri and Y. Ait-Ichou: Applied. Catal. B: Environment Vol. 7 (1995), p.49.

Google Scholar

[14] F. Peng, L. Cai, L. Huang, H. Yu and H. Wang: J. Phys. Chem. Solids Vol. 69 (2008), p.1657.

Google Scholar