Surface Modification of Silver Nanoparticles in Phase Change Materials for Building Energy Application

Article Preview

Abstract:

In this report, we propose a direct silica-coating technique to enhance the stability of silver nanoparticles as a doping additive to enhance the thermal conductivity phase change materials (PCM). Our experimental results show that a thin layer of silica can protect silver nanoparticles and help retain its intrinsic metallic properties, when subjected to harsh corrosive environments found in PCM media. Furthermore, PCM materials can be effectively used to cool the ambient temperature of a building room by up to ~1.2 degree Celsius. Our preliminary results demonstrate a real opportunity in air-conditioning energy-savings for buildings using enhanced PCM.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 622-623)

Pages:

889-892

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hrishikesh E. Patel; T. Sundararajan; Pradeep T. Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Based Nanofluids,. Applied Physics Letters, 2003, 83 14, PP: 2931-2933.

DOI: 10.1063/1.1602578

Google Scholar

[2] Lee S.; Choi U. S.; Li S., Eastman J. A. Enhancing Thermal Conductivity of Fluids with Nanoparticles,. ASME, 1999, 121, PP: 280-285.

Google Scholar

[3] Tyagi Vineet Veer; Buddhi D. PCM Thermal Storage in Buildings: A State-of-art,. Renewable and Sustainable Energy Reviews, 2007, 11, PP: 1146–1166.

DOI: 10.1016/j.rser.2005.10.002

Google Scholar

[4] Zhang Zhengguo; Fang Xiaoming. Study on Paraffin/expanded Graphite Composite Phase Change Thermal Energy Storage Material,. Energy Conversion and Management 2006, 47, PP303–310.

DOI: 10.1016/j.enconman.2005.03.004

Google Scholar

[5] Cabeza L.F.; Castella A.; Barrenechea, Gracia A.; Fernández A.I. Materials used as PCM in Thermal Energy Storage in Buildings : A Review,. Renewable and Sustainable Energy Reviews, 2011, 15, PP: 1675–1695.

DOI: 10.1016/j.rser.2010.11.018

Google Scholar

[6] Ochanda, Fredrick Ooko. Design and fabrication of nanostructured materials from electrospun fiber templates,. PhD Dissertation, State University of New York at Binghamton, May 2007, Publication number 3241624, PP: 6397-6398.

Google Scholar

[7] Cabeza Luisa F.; Cecilia Castello; Miquel Nogue; Marc Medrano; Ron Lepper; Oihana Zubillaga. Use of Microencapsulated PCM in concrete walls for Energy Savings,. Energy and Buildings 2007, 39, PP: 113–119.

DOI: 10.1016/j.enbuild.2006.03.030

Google Scholar

[8] Zeng J.L., Sun L.X., Xu F.; Tan Z. C, Zhang Z.H.; Zhang J.; Zhang T. Study of a PCM Based Energy Storage System Containing Nanoparticles, Journal of Thermal Analysis and Calorimetry, 2007, 87, 2, PP: 369–373.

DOI: 10.1007/s10973-006-7783-z

Google Scholar

[9] Wang Y.L.; Xia Y.N. A Facile, Water-Based Synthesis of Highly Branched Nanostructures of Silver,. Langmuir, 2008, 24, PP: 12042-12046.

DOI: 10.1021/la8020904

Google Scholar

[10] Mila Tejamaya; Isabella Römer; Ruth C. Merrifield; Jamie R. Lead. Stability of Citrate, PVP, and PEG Coated Silver Nanoparticles in Ecotoxicology Media,. Environmental Science and Technology, 2012, 46, PP: 7011−7017.

DOI: 10.1021/es2038596

Google Scholar