[1]
M. W. Barsoum. The MN+1AXN Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates, Prog. Solid St. Chem. 28 (2000) 201-281.
DOI: 10.1016/s0079-6786(00)00006-6
Google Scholar
[2]
Z. M. Sun. Progress in research and development on MAX phases: a family of layered ternary compounds, Int. Mater. Rev. 56(3) (2011) 143-166.
DOI: 10.1179/1743280410y.0000000001
Google Scholar
[3]
E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, M. W. Barsoum. MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and neutron transmutation analysis, Nucl. Engin. Des. 244 (2012) 17-24.
DOI: 10.1016/j.nucengdes.2011.12.009
Google Scholar
[4]
H. B. Zhang, Y. W. Bao and Y. C. Zhou. Current Status in Layered Ternary Carbide Ti3SiC2, a Review, J. Mater. Sci. Technol. 25(1) (2009) 1-38
Google Scholar
[5]
X. H. Wang and Y. C. Zhou. Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review, J. Mater. Sci. Technol. 26(5) (2010) 385-416
DOI: 10.1016/s1005-0302(10)60064-3
Google Scholar
[6]
P. Finkel, M. W. Barsoum, J. D. Hettinger, S. E. Lofland and H. I. Yoo. Low-temperature transport properties of nanolaminates Ti3AlC2 and Ti4AlN3, Phys. Rev. B. 67 (2003) 235108.
Google Scholar
[7]
A. L. Ivanovskii and N. I. Medvedeva. Electronic structure of hexagonal Ti3AlC2 and Ti3AlN2, Mendeleev Commun. 9(1) (1999) 36-38.
DOI: 10.1070/mc1999v009n01abeh001039
Google Scholar
[8]
Y. C. Zhou, Z. M. Sun, X. H. Wang, S. Q. Chen. Ab initio geometry optimization and ground state properties of layered ternary carbides Ti3MC2 (M=Al, Si and Ge), J. Phys.: Cond. Matter, 13 (2001) 10001-10010.
DOI: 10.1088/0953-8984/13/44/313
Google Scholar
[9]
Y. C. Zhou, X. H. Wang, Z. M. Sun and S. Q. Chen. Electronic and structural properties of the layered ternary carbide Ti3AlC2, J. Mater. Chem. 11 (2001) 2335-2339.
DOI: 10.1039/b101520f
Google Scholar
[10]
Y. W. Bao, Y. C. Zhou. Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics, Mater. Letts. 57 (2003) 4018-4022.
DOI: 10.1016/s0167-577x(03)00258-1
Google Scholar
[11]
P. Finkel, M. W. Barsoum and T. El-Raghy. Low temperature dependence of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8 , and Ti3SiC2, J Appl. Phys. 87(4) (2000) 1701-1703.
DOI: 10.1063/1.372080
Google Scholar
[12]
P. Finkel, M. W. Barsoum and T. El-Raghy. Low temperature dependence of the elastic properties of Ti3SiC2, J. Appl. Phys. 85(10) (1999) 7123-7126.
DOI: 10.1063/1.370521
Google Scholar
[13]
X. D. He, Y. L. Bai, C. C. Zhu, Y. Sun, M. W. Li, M. W. Barsoum. General trends in the structural, electronic and elastic properties of the M3AlC2 phases (M = transition metal): A first-principle study. Computational Materials Science, 49 (2010) 691-698
DOI: 10.1016/j.commatsci.2010.06.012
Google Scholar
[14]
J. Y. Wang and Y. C. Zhou. First-principles study of equilibrium properties and electronic structure of Ti3Si0.75Al0.25C2 solid solution. J. Phys: Cond. Matter, 15 (2003) 5959–5968.
Google Scholar
[15]
Y. C. Zhou, J. X. Chen, J. Y. Wang. Strengthening of Ti3AlC2 by Incorporation of Si to form Ti3Al1-xSixC2 Solid Solutions. Acta Materialia, 54 (2006) 1317-1322.
DOI: 10.1016/j.actamat.2005.10.057
Google Scholar
[16]
C. L. Yeh, J. H. Chen. Combustion synthesis of Ti3Si1-xAlxC2 solid solutions from TiC-, SiC-, and Al4C3-containing powder compact. J. Alloy. Compounds, 509 (2011) 7277-7282.
DOI: 10.1016/j.jallcom.2011.04.076
Google Scholar
[17]
G. Geneste, J. M. Kiat, C. Malibert. First-principles calculations of quantum paraelectric La1/2Na1/2TiO3 in the virtual-crystal approximation: Structural and dynamical properties. Phys Rev B, 77(5) (2008) 052106.
Google Scholar
[18]
M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens Matter. 14(11) (2002) 2717-2744.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[19]
J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Letts. 77 (1996) 3865-3868.
DOI: 10.1103/physrevlett.77.3865
Google Scholar
[20]
D. Vanderblilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892-7895.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[21]
H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188-5192.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[22]
T. H. Fisher, J. Almlof, General methods for geometry and wave-function optimization, J. Phys. Chem. 96 (1992) 9768-9774.
DOI: 10.1021/j100203a036
Google Scholar
[23]
X. F. Hao, Y. H. Xu, Z. J. Wu. Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study. Phys. Rev. B. 74 (2006) 224112.
Google Scholar
[24]
R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London A. 65 (1952) 349-355.
Google Scholar
[25]
O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24(7) (1963) 909-917.
DOI: 10.1016/0022-3697(63)90067-2
Google Scholar
[26]
P. Hermet, S. Goumri-Said, M. B. Kanoun, et al., First-principles investigation of the physical properties of magnesium nitrideboride, J. Phys. Chem. C. 113 (2009) 4997-5003.
DOI: 10.1021/jp8091286
Google Scholar
[27]
X. F. Hao, Y. H. Xu, Z. J. Wu, et al., Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study, Phys. Rev. B. 74 (2006) 224112.
Google Scholar
[28]
D. H. Chung, W. R. Buessem, Anisotropy in Single Crystal Refractory Compounds, Plenum, New York, 1968.
Google Scholar