First-Principles Study of Electronic Structure and Elastic Properties of Si Doping Ti3Al1-xSixC2 Solid Solutions

Article Preview

Abstract:

The electronic structure and elastic properties of Si doping Ti3Al1-xSixC2 (x=0-1) were studied by generalized gradient approximation (GGA) based on density functional theory (DFT) and virtual crystal approximation (VCA). The calculated lattice parameters and equilibrium volumes are in good agreement with the available experimental data. The density of state (DOS) shows that the DOS at the Fermi level (EF) is located at the bottom of a valley. Single-crystal elastic constants were calculated and the polycrystalline elastic modules were estimated according to Voigt, Reuss and Hill’s approximations (VRH). The results show that the bulk modules increase monotonously and the Poisson ratio v as well as BH and BG increase first and then decrease with the increasing of the doping Si. The Passion ratio v and BH/GH indicate that Ti3Al1-xSixC2 (x=0-1) are brittle compounds. Polycrystalline elastic anisotropy coefficients AB and AG were also derived and are very small.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-126

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. W. Barsoum. The MN+1AXN Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates, Prog. Solid St. Chem. 28 (2000) 201-281.

DOI: 10.1016/s0079-6786(00)00006-6

Google Scholar

[2] Z. M. Sun. Progress in research and development on MAX phases: a family of layered ternary compounds, Int. Mater. Rev. 56(3) (2011) 143-166.

DOI: 10.1179/1743280410y.0000000001

Google Scholar

[3] E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, M. W. Barsoum. MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and neutron transmutation analysis, Nucl. Engin. Des. 244 (2012) 17-24.

DOI: 10.1016/j.nucengdes.2011.12.009

Google Scholar

[4] H. B. Zhang, Y. W. Bao and Y. C. Zhou. Current Status in Layered Ternary Carbide Ti3SiC2, a Review, J. Mater. Sci. Technol. 25(1) (2009) 1-38

Google Scholar

[5] X. H. Wang and Y. C. Zhou. Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review, J. Mater. Sci. Technol. 26(5) (2010) 385-416

DOI: 10.1016/s1005-0302(10)60064-3

Google Scholar

[6] P. Finkel, M. W. Barsoum, J. D. Hettinger, S. E. Lofland and H. I. Yoo. Low-temperature transport properties of nanolaminates Ti3AlC2 and Ti4AlN3, Phys. Rev. B. 67 (2003) 235108.

Google Scholar

[7] A. L. Ivanovskii and N. I. Medvedeva. Electronic structure of hexagonal Ti3AlC2 and Ti3AlN2, Mendeleev Commun. 9(1) (1999) 36-38.

DOI: 10.1070/mc1999v009n01abeh001039

Google Scholar

[8] Y. C. Zhou, Z. M. Sun, X. H. Wang, S. Q. Chen. Ab initio geometry optimization and ground state properties of layered ternary carbides Ti3MC2 (M=Al, Si and Ge), J. Phys.: Cond. Matter, 13 (2001) 10001-10010.

DOI: 10.1088/0953-8984/13/44/313

Google Scholar

[9] Y. C. Zhou, X. H. Wang, Z. M. Sun and S. Q. Chen. Electronic and structural properties of the layered ternary carbide Ti3AlC2, J. Mater. Chem. 11 (2001) 2335-2339.

DOI: 10.1039/b101520f

Google Scholar

[10] Y. W. Bao, Y. C. Zhou. Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics, Mater. Letts. 57 (2003) 4018-4022.

DOI: 10.1016/s0167-577x(03)00258-1

Google Scholar

[11] P. Finkel, M. W. Barsoum and T. El-Raghy. Low temperature dependence of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8 , and Ti3SiC2, J Appl. Phys. 87(4) (2000) 1701-1703.

DOI: 10.1063/1.372080

Google Scholar

[12] P. Finkel, M. W. Barsoum and T. El-Raghy. Low temperature dependence of the elastic properties of Ti3SiC2, J. Appl. Phys. 85(10) (1999) 7123-7126.

DOI: 10.1063/1.370521

Google Scholar

[13] X. D. He, Y. L. Bai, C. C. Zhu, Y. Sun, M. W. Li, M. W. Barsoum. General trends in the structural, electronic and elastic properties of the M3AlC2 phases (M = transition metal): A first-principle study. Computational Materials Science, 49 (2010) 691-698

DOI: 10.1016/j.commatsci.2010.06.012

Google Scholar

[14] J. Y. Wang and Y. C. Zhou. First-principles study of equilibrium properties and electronic structure of Ti3Si0.75Al0.25C2 solid solution. J. Phys: Cond. Matter, 15 (2003) 5959–5968.

Google Scholar

[15] Y. C. Zhou, J. X. Chen, J. Y. Wang. Strengthening of Ti3AlC2 by Incorporation of Si to form Ti3Al1-xSixC2 Solid Solutions. Acta Materialia, 54 (2006) 1317-1322.

DOI: 10.1016/j.actamat.2005.10.057

Google Scholar

[16] C. L. Yeh, J. H. Chen. Combustion synthesis of Ti3Si1-xAlxC2 solid solutions from TiC-, SiC-, and Al4C3-containing powder compact. J. Alloy. Compounds, 509 (2011) 7277-7282.

DOI: 10.1016/j.jallcom.2011.04.076

Google Scholar

[17] G. Geneste, J. M. Kiat, C. Malibert. First-principles calculations of quantum paraelectric La1/2Na1/2TiO3 in the virtual-crystal approximation: Structural and dynamical properties. Phys Rev B, 77(5) (2008) 052106.

Google Scholar

[18] M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens Matter. 14(11) (2002) 2717-2744.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[19] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Letts. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[20] D. Vanderblilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[21] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[22] T. H. Fisher, J. Almlof, General methods for geometry and wave-function optimization, J. Phys. Chem. 96 (1992) 9768-9774.

DOI: 10.1021/j100203a036

Google Scholar

[23] X. F. Hao, Y. H. Xu, Z. J. Wu. Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study. Phys. Rev. B. 74 (2006) 224112.

Google Scholar

[24] R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. London A. 65 (1952) 349-355.

Google Scholar

[25] O. L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24(7) (1963) 909-917.

DOI: 10.1016/0022-3697(63)90067-2

Google Scholar

[26] P. Hermet, S. Goumri-Said, M. B. Kanoun, et al., First-principles investigation of the physical properties of magnesium nitrideboride, J. Phys. Chem. C. 113 (2009) 4997-5003.

DOI: 10.1021/jp8091286

Google Scholar

[27] X. F. Hao, Y. H. Xu, Z. J. Wu, et al., Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study, Phys. Rev. B. 74 (2006) 224112.

Google Scholar

[28] D. H. Chung, W. R. Buessem, Anisotropy in Single Crystal Refractory Compounds, Plenum, New York, 1968.

Google Scholar