[1]
Y. Tokura, Y. Tomioka, Colossal magnetoresistive manganites, J. Magn. Magn. Mater., 200 (1999) 1-23.
Google Scholar
[2]
D.G. Gilmore, D.G. Gilmore ed., Spacecraft Thermal Control Handbook, The Aerospace Press, El Segundo, California, 2002.
Google Scholar
[3]
S. Ho-Jung, P. Chang-Sun, Preparation of semiconductive La0.6Sr0.4MnO3 thin films for electrode applications by using metal-organic decomposition, J. Korean Physical Society, 57 (2010) 994.
DOI: 10.3938/jkps.57.994
Google Scholar
[4]
J.W. Fergus, R. Hui, X. Li, D.P. Wilkinson, J. Zhang, Solid Oxide Fuel Cells: Material properties and perforemance, CRC Press, USA, 2008.
Google Scholar
[5]
R. Dhahri, F. Halouni, Study of the effect of oxygen deficiencies on the La1-x(Sr,Ca)xMnO3-δδ manganites properties, J. Alloys Compd., 385 (2004) 48-52.
DOI: 10.1016/j.jallcom.2004.04.125
Google Scholar
[6]
C. Zener, Interaction Between the d Shells in the Transition Metals, Phys. Rev., 81 (1951) 440-444.
Google Scholar
[7]
M. Gaudon, C. Laberty-Robert, F. Ansart, P. Stevens, A. Rousset, Preparation and characterization of La1-xSrxMnO3+d (0≤ x ≤0.6) powder by sol-gel processing, Sol. Stat. Sci., 4 (2002) 125-133.
DOI: 10.1016/s1293-2558(01)01208-0
Google Scholar
[8]
S. Daengsakul, C. Thomas, I. Thomas, C. Mongkolkachit, S. Siri, V. Amornkitbamrung, S. Maensiri, Magnetic and cytotoxicity properties of La1-xSrxMnO3 (0≤ x ≤0.5) nanoparticles prepared by a simple thermal hydro-decomposition, Nano. Res. Lett., 4 (2009) 839-845.
DOI: 10.1007/s11671-009-9322-x
Google Scholar
[9]
V. Markovich, G. Jung, I. Fita, et al., Magnetotransport in granular LaMnO3+δ manganite with nano-sized particles, J. Phys. D: Appl. Phys., 41 (2008) 185001.
DOI: 10.1088/0022-3727/41/18/185001
Google Scholar
[10]
G. Li, H.D. Zhou, S.J. Feng, X.J. Fan, X.G. Li, Z.D. Wang, Competition between ferromagnetic metallic and paramagnetic insulating phases in manganites, J. Appl. Phys., 92 (2002) 1406.
DOI: 10.1063/1.1490153
Google Scholar
[11]
S. Das, T.K. Dey, Electrical conductivity and low field magnetoresistance in polycrystalline La1-xKxMnO3 pellets prepared by pyrophoric method, Sol. Stat. Commun., 134 (2005) 837-842.
DOI: 10.1016/j.ssc.2005.01.023
Google Scholar
[12]
P. Orgiani, A. Guarino, C. Aruta, et al., Magneto- transport properties of epitaxial strain-less La0.7Ba0.3MnO3 thin films, J. Appl. Phys., 101 (2007) 033904.
Google Scholar
[13]
V. Petrykin, M. Kakihana, Chemistry and Applications of Polymeric Gel Precursors, in: H. Kozuka (ed.) Sol-gel processing, Vol. 1, in:S. Sakka (ed.), Handbook of sol-gel science and technology: Processing, charaterization and applications, Kluwer, Dordrecht, 2005, pp.77-103.
DOI: 10.1007/978-3-319-32101-1_4
Google Scholar
[14]
M. Bo, T. Xiaoyao, Z. Baoyan, Y. Naitao, A new combustion process for nanosized BaCe0.95Y0.05O3-d powder, J. Rare Earths, 22 (2004) 658-662.
Google Scholar
[15]
B.M. Nagabhushana, R.P. Sreekanth Chakradhar, K.P. Ramesh, C. Shivakumara, G.T. Chandrappa, Low temperature synthesis, structural characterization, and zero-field resistivity of nanocrystalline La1-xSrxMnO3+d (0.0≤ x ≤0.3) manganites, Mater. Res. Bull., 41 (2006) 1735-1746.
DOI: 10.1016/j.materresbull.2006.02.014
Google Scholar
[16]
Y.W. Duan, X.L. Kou, J.G. Li, Size dependence of structure and magnetic properties of La0.7Sr0.3MnO3 nanoparticles, Physica B: Condensed Matter, 355 (2005) 250-254.
DOI: 10.1016/j.physb.2004.10.100
Google Scholar
[17]
J. Topfer, J.B. Goodenough, LaMnO3+δ revisited, J. Sol. Stat. Chem., 130 (1997) 117-128.
Google Scholar
[18]
M. Verelst, N. Rangavittal, C.N.R. Rao, A. Rousset, Metal-insulator transitions in anion-excess LaMnO3+δ controlled by the Mn4+ content, J. Sol. Stat. Chem., 104 (1993) 74-80.
DOI: 10.1006/jssc.1993.1142
Google Scholar
[19]
S. Ponce, M.A. Peña, J.L.G. Fierro, Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites, Appl. Catal. B: Environ., 24 (2000) 193-205.
DOI: 10.1016/s0926-3373(99)00111-3
Google Scholar
[20]
X.L. Wang, D. Li, C.X. Shi, et al., Effect of the calcination temperature on the magnetic and transport properties of rhombohedral LaMnO3+δ compounds, Physica B, 405 (2010) 1362-1368.
DOI: 10.1016/j.physb.2009.12.001
Google Scholar
[21]
A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulator-Metal transition and giant magnetoresistance in La1-xSrxMnO3, Phys. Rev. B, 51 (1995) 14103-14109.
Google Scholar
[22]
N. Ibrahim, A.K. Yahya, S.S. Rajput, S. Keshri, M.K. Talari, Double metal–insulator peaks and effect of Sm3+ substitution on magnetic and transport properties of hole-doped La0.85Ag0.15MnO3, J. Magn. Magn. Mater., 323 (2011) 2179-2185.
DOI: 10.1016/j.jmmm.2011.03.027
Google Scholar
[23]
G. Venkataiah, V. Prasad, P. Venugopal Reddy, Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites, J. Alloys Compd., 429 (2007) 1-9.
DOI: 10.1016/j.jallcom.2006.03.081
Google Scholar
[24]
D.C. Worledge, G.J. Snyder, M.R. Beasley, T.H. Geballe, R. Hiskes, S. DiCarolis, Anneal-tunable Curie temperature and transport of La0.67Ca0.33MnO3, J. Appl. Phys., 80 (1996) 5158.
DOI: 10.1063/1.363498
Google Scholar
[25]
D. Emin, T. Holstein, Adiabatic theory of an electron in a deformable continuum, Phys. Rev. Lett., 36 (1976) 323–326.
DOI: 10.1103/physrevlett.36.323
Google Scholar
[26]
A. Moreo, S. Yunoki, E. Dagotto, Pseudogap Formation in Models for Manganites, Phys. Rev. Lett., 83 (1999) 2773-2776.
DOI: 10.1103/physrevlett.83.2773
Google Scholar