Effect of RF Power on the Structural Properties of Magnetron Sputtered ZnO Thin Films Deposited at Room Temperature

Article Preview

Abstract:

Zinc oxide thin films were prepared at room temperature in pure argon ambient on glass substrates by RF magnetron sputtering. The effect of sputtering power (50~250 Watt) on the structural properties of the film were investigated. The thickness of ZnO thin films was measured using surface profiler (Dektak 150+). Atomic force microscopy machine (AFM-Park system XE-100) was used to characterize the morphology while the crystalinity have been characterized using XRD (Rigaku Ultima IV). It was found that the thickness, growth rate and RMS roughness increases with increasing RF power. All films exhibit the (002) plane which correspond to hexagonal wurtzite structure with the highest peak at 150 Watt.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-167

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.F. Yang, H.C. Wen, S.R. Jian, Y.S. Lai, S. Wu, and R.S. Chen: Microelectronics Reliability, vol. 48 (2008) pp.389-394.

Google Scholar

[2] R.O. Ndong, F.P. Delannoy,A. Boyer,A. Giani, and A. Foucaran: Materials Science and Engineering: B, vol. 97 (2003) pp.68-73.

DOI: 10.1016/s0921-5107(02)00406-3

Google Scholar

[3] S. Singh, R. S. Srinivasa, and S. S. Major: Thin Solid Films, vol. 515 (2007) pp.8718-8722.

Google Scholar

[4] P. Nunes, E. Fortunato, and R. Martins: Thin Solid Films, vol. 383, pp.277-280, (2001).

Google Scholar

[5] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, and G. Kiriakidis: Thin Solid Films, vol. 515, pp.551-554, (2006).

DOI: 10.1016/j.tsf.2005.12.295

Google Scholar

[6] Che-Wei Hsu, Tsung-Chieh Cheng, Chun-Hui Yang, Yi-Ling Shen, Jong-Shinn Wu, and Sheng-Yao Wu : Journal of Alloys and Compounds, vol. 509, pp.1774-1776, (2011).

Google Scholar

[7] M. Selmi, F. Chaabouni, M. Abaab, and B. Rezig: Superlattices and Microstructures, vol. 44, pp.268-275, (2008).

DOI: 10.1016/j.spmi.2008.06.005

Google Scholar

[8] M. D. J. Ooi, A. A. Aziz, and M. J. Abdullah: ICSE 2008. IEEE International Conference, 2008, pp.514-518.

Google Scholar

[9] S. H. Jeong, S. Kho,D. JungS. B. Lee, and J. H. Boo: Surface and Coatings Technology, vol. 174–175, pp.187-192, (2003).

Google Scholar

[10] Y. C. Lin, M. Z. Chen,C. C. Kuo, and W. T. Yen: Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 337, pp.52-56, (2009).

Google Scholar

[11] Hyoun Woo Kim and Nam Ho Kim : Materials Science and Engineering: B, vol. 103, pp.297-302, (2003).

Google Scholar

[12] R. Ondo-Ndong, G. Ferblantier, M. Al Kalfioui, A. Boyer, and A. Foucaran: Journal of Crystal Growth, vol. 255, pp.130-135, (2003).

DOI: 10.1016/s0022-0248(03)01243-0

Google Scholar

[13] F. V. Farmakis, Th Speliotis, K. P. Alexandrou, C. Tsamis, M. Kompitsas, I. Fasaki,P. Jedrasik, G. Petersson, and B. Nilsson : Microelectronic Engineering, vol. 85, pp.1035-1038, (2008).

DOI: 10.1016/j.mee.2008.01.040

Google Scholar

[14] J.I. Son, J.H. Shim, and N.H. Cho, Variations in electrical and physical properties of Al: ZnO films with preparation conditions, Metals and Materials International, vol. 17, pp.99-104, (2011).

DOI: 10.1007/s12540-011-0213-1

Google Scholar

[15] Y.M. Lu, W.S. Hwang, W.Y. Liu, and J.S. Yang: Materials Chemistry and Physics, vol. 72, pp.269-272, (2001).

Google Scholar

[16] K. -H. Deuk-Kyu Hwang, Min-Chang Jeong, and Jae-Min Myoung: Journal of Crystal Growth, vol. 254, pp.449-455, (2003).

Google Scholar

[17] J. W. Kim, H. B. Kim, and D. K. Kyu: Journal of the Korean Physical Society, vol. 59, pp.2349-2353, (2011).

Google Scholar

[18] Z.M. Seeley, A. Bandyopadhyay, and S Bose: Materials Science and Engineering: B, vol. 164 (2009) pp.38-43.

Google Scholar