Sensitivity of ZnO Based NH3 Sensor by RF Magnetron Sputtering

Article Preview

Abstract:

Zinc Oxide (ZnO) thin films were deposited onto SiO2/Si substrates using radio frequency (RF) magnetron sputtering method as an Ammonia (NH3) sensor. The dependence of RF power (50~300 Watt) on the structural properties and sensitivity of NH3 sensor were investigated. XRD analysis shows that regardless of the RF power, all samples display the preferred orientation on the (002) plane. The results show that the ZnO deposited at 200 Watt display the highest sensitivity value which is 44%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-172

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Renganathan, D. Sastikumar, G. Gobi, N.R. Yogamalar and A.C. Bose: Optics & Laser Technology Vol. 43 (2011) pp.1398-1404.

DOI: 10.1016/j.optlastec.2011.04.008

Google Scholar

[2] Z. Bai, C. Xie, S. Zhang, L. Zhang, Q. Zhang, W. Xu, and J. Xu: Sensors and Actuators B: Chemical, Vol. 151 (2010) pp.107-113.

Google Scholar

[3] A.M. Soleimanpour and A.H. Jayatissa: Nanotechnology Materials and Devices Conference (NMDC), 2010 IEEE, 2010, pp.225-229.

Google Scholar

[4] S.J. Chang, W.Y. Weng, C. L. Hsu, and T.J. Hsueh, : Nano Communication Networks, Vol. 1 (2010) pp.283-288.

Google Scholar

[5] K Mirabbaszadeh and M Mehrabian: Phys. Scr. Vol. 85 (2012) p.035701.

Google Scholar

[6] T. Siciliano, M. DiGiulio,M. Tepore, E. Filippo, G. Micocci and A. Tepore: Sensors and Actuators B: Chemical Vol. 138 (2009) pp.550-555.

DOI: 10.1016/j.snb.2009.02.068

Google Scholar

[7] A. Forleo, L. Francioso,S. Capone, P. Siciliano,P. Lommens, and Z. Hens, : Sensors and Actuators B: Chemical, Vol. 146 (2010) pp.111-115.

DOI: 10.1016/j.snb.2010.02.059

Google Scholar

[8] J.N. Zeng, J. K. Low, Z.M. Ren,T. Liew, and Y. F. Lu, : Applied Surface Science, Nol. 197–198 (2002) pp.362-367.

Google Scholar

[9] A. J. C. Fiddes, K. Durose, A. W. Brinkman, J. Woods, P. D. Coates, and A. J. Banister: Journal of Crystal Growth, vol. 159 (1996) pp.210-213.

DOI: 10.1016/0022-0248(95)00707-5

Google Scholar

[10] M. N. Kamalasanan and S. Chandra: Thin Solid Films, vol. 288 (1996) pp.112-115.

Google Scholar

[11] K.B. Sundaram and A. Khan, : Thin Solid Films, vol. 295 (1997) pp.87-91.

Google Scholar

[12] C.W. Hsu, T.C. Cheng C.H. Yang, Y.L. Shen, J.S. Wu, and S.Y. Wu, : Journal of Alloys and Compounds, vol. 509 (2011) pp.1774-1776.

Google Scholar

[13] M. Selmi, F. Chaabouni, M. Abaab, and B. Rezig: Superlattices and Microstructures, vol. 44(2008)pp.268-275.

DOI: 10.1016/j.spmi.2008.06.005

Google Scholar

[14] M. D. J. Ooi, A. A. Aziz, and M. J. Abdullah: Semiconductor Electronics, 2008. ICSE 2008. IEEE International Conference on, 2008, pp.514-518.

Google Scholar

[15] J.I. Son, J. -H. Shim, and N. -H. Cho: Met. Mater. Int. Vol. 17, No. 1 (2011) pp.99-104.

Google Scholar

[16] Y.M. Lu, W.S. Hwang, W.Y. Liu, J.S. Yang: Materials Chemistry and Physics, Vol. 72 (2001) p.269–272.

Google Scholar

[17] D.K. Hwang, K.H. Bang, M.C. Jeong, and J.M. Myoung: Journal of Crystal Growth, Vol. 254 (2003) p.449–455.

Google Scholar

[18] C. Yang, Z. Zeng, Z. Chen, J. Liu, and S. Zhang: Journal of Crystal Growth, Vol. 293 (2006) p.299–304.

Google Scholar

[19] H.W. Kim, N.H. Kim: Materials Science and Engineering, Vol. B103 (2003) p.297–302.

Google Scholar

[20] X.L. Cao: Advanced Materials Research Vol. 335-336 (2011) pp.478-482.

Google Scholar

[21] L. Xu, R. Wang,Y. Liu and L. Dong: Chin. Phys. Lett. Vol. 28, No. 4 (2011) p.040701.

Google Scholar

[22] A. Wei, Z. Wang, L.H. Pan, W.W. Li, L. Xiong, X.C. Dong and W. Huang: Chin. Phys. Lett. Vol. 28, No. 8 (2011) p.080702.

Google Scholar

[23] Z.M. Seeley, A. Bandyopadhyay, and S Bose: Materials Science and Engineering: B, vol. 164 (2009) pp.38-43.

Google Scholar