Iodine Doping of Amorphous Carbon Thin Films Deposited by Thermal CVD

Article Preview

Abstract:

A simple thermal chemical vapor deposition method is employed for the deposition of amorphous carbon thin films by natural precursor camphor oil onto the glass substrates and the iodine doping process. In this work, we have studied the effect of iodine doping on the evolution of electrical properties and the optical and structural properties of amorphous carbon thin films. The amorphous carbon thin films were characterized by using Raman spectroscopy, UV-VIS-NIR spectroscopy, current-voltage (I-V) measurement, Fourier transform infrared (FTIR) and FESEM. The I-V study reveals that the electrical conductivity was increased with the iodine doping. The iodine doped thin films induced graphitization by decreasing the optical band gap. Raman and FTIR result indicates that amorphous carbon thin films consist of a mixture of sp2 and sp3 bonded carbon atoms. The FESEM shows the amorphous nature of the thin films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

834-838

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Umeno, S. Adhikary, H. Uchida, T. Xuemin, A.M.M. Omer, S. Adhikari: IEEE 31( 2005), pp.163-166.

Google Scholar

[2] H. Zhu, J. Wei, K. Wang, D. Wu: Sol. Energy Mater. Sol. Cells 93 (2009), pp.1461-1470.

Google Scholar

[3] P.K. Chu, L. Li: Mater. Chem. Phys. 96 (2006), pp.253-277.

Google Scholar

[4] D.B. Mahadik, S.S. Shinde, C.H. Bhosale, K.Y. Rajpure: J. Alloys Compd. 509 (2011), pp.1418-1423.

Google Scholar

[5] S. De, S. Niranjana, B.S. Satyanarayana, K. Mohan Rao: Scientia Iranica 18 (2011), pp.797-803.

DOI: 10.1016/j.scient.2011.07.001

Google Scholar

[6] M. Rusop, A.M.M. Omer, S. Adhikari, S. Adhikary, H. Uchida, T. Soga, T. Jimbo, M. Umeno: Diamond Relat. Mater. 14 (2005), pp.975-982.

DOI: 10.1016/j.diamond.2004.12.040

Google Scholar

[7] C. -S. Park, S.G. Choi, J. -N. Jang, M. Hong, K. -H. Kwon, H. -H. Park: Surf. Coat. Technol. (2012).

Google Scholar

[8] A.M.M. Omer, S. Adhikari, S. Adhikary, H. Uchida, M. Umeno: Diamond Relat. Mater. 13 (2004), pp.2136-2139.

Google Scholar

[9] Ishpal, O.S. Panwar, M. Kumar, S. Kumar: Mater. Chem. Phys. 125 (2011), pp.558-567.

Google Scholar

[10] A.M.M. Omer, S. Adhikari, S. Adhikary, M. Rusop, H. Uchida, M. Umeno, T. Soga: Physica B: Condensed Matter 376–377 (2006), pp.316-319.

DOI: 10.1016/j.physb.2005.12.081

Google Scholar

[11] A.M.M. Omer, S. Adhikari, S. Adhikary, M. Rusop, H. Uchida, T. Soga, M. Umeno: Diamond Relat. Mater. 15 (2006), pp.645-648.

DOI: 10.1016/j.diamond.2005.11.045

Google Scholar

[12] L. Klibanov, M. Oksman, A. Seidman, N. Croitoru: Diamond Relat. Mater. 6 (1997), pp.1152-1156.

Google Scholar

[13] L. Klibanov, M. Allon-Alaluf, N. Croitoru, A. Seidman: Diamond Relat. Mater. 5 (1996), pp.1414-1417.

DOI: 10.1016/s0925-9635(96)00572-9

Google Scholar

[14] L. Kumari, S.V. Subramanyam, A. Gayen, V. Jayaram: Thin Solid Films 471 (2005), pp.252-256.

DOI: 10.1016/j.tsf.2004.06.093

Google Scholar

[15] M. Rusop, T. Kinugawa, T. Soga, T. Jimbo: Diamond Relat. Mater. 13 (2004), pp.2174-2179.

Google Scholar

[16] Z. Zhuo, F. Zhang, J. Wang, J. Wang, X. Xu, Z. Xu, Y. Wang, W. Tang: Solid-State Electronics 63 (2011), pp.83-88.

Google Scholar