Ultra Compact 1×11 Power Splitter Using Polydiacetylene Multimode Interference Coupler

Article Preview

Abstract:

The purpose of this study is to propose an ultra compact 1×11 power splitter using a Polydiacetylene multimode interference coupler to improve its performance and decrease the dimension based on a contribution of Kerr nonlinear effect on modes propagation and interference. The power splitting is done with 11 outputs and small dimension. In fact, this is the first time that a power splitter is demonstrated at the length of less than 100µm with a large number of outputs. The device efficiency is studied in terms of insertion loss and uniformity. The simulation result shows extremely low uniformity and insertion loss due to the great small length.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

853-860

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Soldano and E. Pennings: J. Light. Technol Vol. 13 (1995), p.615–627.

Google Scholar

[2] A. Ferreras, F. Roriguez, L. Miguel and F. Hernandez: IEEE, Photonics Technology Letters Vol. 5 (1993).

Google Scholar

[3] M. Swillam, M. Bakr and X. Li: Journal of Light Wave Technology Vol. 28 (2010) pp.1176-1183.

Google Scholar

[4] A. Hosseini, D. N. Knowng, Y. Zhang, Y. Liu, and R. T. chen: On the Optimum Design for 1×N Multimode Interference Coupler based Beam Splitter, , Journal of Integrated Optic Devices, OSA, Oc. 130. 3120 (2010).

Google Scholar

[5] A. M. Rashed, and D. R. Selviah, Modeling of a Polimer 1×3 MMI Power Splitter for Optical Backplane, IEEE. COMMAD 04 (2005) pp.281-284.

DOI: 10.1109/commad.2004.1577545

Google Scholar

[6] A. Bahrami and A. Rostami: Optica Aplicata Vol. 41 (2011) pp.165-173.

Google Scholar

[7] G. Singh, R. Yadav and V. Janyani: International journal of Recent Trends in Engineering, Vol. 1 (2009) pp.115-119.

Google Scholar

[8] L. Thanh: VNU Journal of Science-physics Vol. 26 (2010) pp.107-113.

Google Scholar

[9] D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delags, J. Seigfried, P. Cheben, J. Schmid and B. Lamontagne: Optic Express Vol. 15 (2007) pp.3149-3155.

DOI: 10.1364/oe.15.003149

Google Scholar

[10] J. H. Kim, H. S. Kim, E. D. Sim, K. H. Kim, O. K. Kwen and K. R. Oh: ETRI Journal Vol. 26 (2004) pp.344-350.

Google Scholar

[11] F. Mederer, R. Michalzik, J. Guttmann, H. P. Huber, B. Liunitz, J. Moisel, and D. Weidenmann: Opt. Comms. Journal Vol. 206 (2002).

Google Scholar

[12] O. Karaishi, D. Tanaka, M. Shimajo, and K. Kajikawa: Journal of Physics D: Applied Physics Vol. 45 (2012) pp.1-5.

Google Scholar

[13] S. Fomine, E. Adem, T. Ogawa, and D. V. Rao: Polymer Bulletin Journal Vol. 34 (1995) pp.169-173.

Google Scholar

[14] R . Boyd., Nonlinear optics, (Third Edition, Academic press, Amazon 2008).

Google Scholar

[15] G. Euliss: Journal of Light wave Technology Vol. 1 (1999) pp.1206-1210.

Google Scholar

[16] K. Izuka, Elements of Photonics, Volume II: For Fiber and Integrated optics. (New York, Wiley, 2002).

Google Scholar