Post-Growth Annealing Effects on the Photoluminescence of ZnO Nanoparticle-Based Discs

Article Preview

Abstract:

The luminescence of ZnO exhibits a band-edge UV emission peak and a broad emission in the blue-green-red regions associated with the deep level defects as well as the oxygen vacancies and zinc interstitials in the discs. The mechanism of the defect is attributed to the electronic transitions from near conduction band-edge to the deep level acceptors and transitions from the deep donor levels to the valence band. In this study, post-growth annealing was conducted to investigate the mechanism involved in the visible luminescence of ZnO nanoparticle discs prepared. Post-growth thermal annealing can be applied as a new technique in controlling the optical properties of ZnO discs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

844-848

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nashimoto K, Nakamura S and Mariyama H Japan, J. Appl. Phys. 43 (1995) 5091.

Google Scholar

[2] Nagata T, Shimura T, Asida A, Fujimura N and Ito T, J. Cryst. Growth 237 (2002) 537.

Google Scholar

[3] Spanhel L, Anderson M. A, J. Am. Chem. Soc., 113 (1991) 2826.

Google Scholar

[4] Y.K. Park, J. Inhan, M.G. Kwak, H. Yang, S.H. Yu, W.S. Cho, J. Lumin. 78 (1998) 87.

Google Scholar

[5] M. Bendahan, R. Boulmani, J.L. Seguin, K. Aguir, Sensor and Actuator B. 100 (2004) 320.

Google Scholar

[6] T. Sekiguchi, N. Ohashi and Y. Terada, J. Appl. Phys. 36 (1997) 289.

Google Scholar

[7] X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang and H. Cao,  Appl. Phys. Lett. 85 (2004) 3657-3659.

DOI: 10.1063/1.1808888

Google Scholar

[8] B. Lin, Z. Fu, Y. Jia, and G. Liao, J. Electrochem. Soc. 148 (2001) G110-G113.

Google Scholar

[9] M. Anpo, Y. Kubokawa, J. Phys. Chem. 88 (1984) 5556.

Google Scholar

[10] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, Optic. Mater. 17 (2001) 327.

Google Scholar

[11] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang and H. H. Hng, J. Appl. Phys. 94 (2003) 354.

Google Scholar

[12] H. Zeng, W. Cai, J. Hu, G. Duan, P. Liu, and Y. Li, Appl. Phys. Lett. 88 (2006) 171910-171912.

Google Scholar

[13] X.M. Sui, C.L. Shao, and Y.C. Liu, Appl. Phys. Lett. 87 (2005) 113115-113117.

Google Scholar

[14] A. Van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B, 104 (2000) 1715-1723.

Google Scholar

[15] K.C. Mishra, P.C. Schmidt, K.H. Johnson, B.G. DeBoer, J.K. Berkowitz, and E.A. Dale, Phys. Rev. B, 42 (1990) 1423-1430.

Google Scholar