[1]
Likharev K 2003 Nano and Giga Challenges in Microelectronics ed J Greer, A Korkin and J Labanowski (Amsterdam: Elsevier).
DOI: 10.1016/b978-044451494-3/50000-7
Google Scholar
[2]
Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1996Conductance of a molecular junction Science 278 252–4.
Google Scholar
[3]
Liang W, Shores M P, Bockrath M, Long J R and Park H 2002Kondo resonance in a single-molecule transistor Nature 417 725–8.
DOI: 10.1038/nature00790
Google Scholar
[4]
Qing Q, Chen F, Li P G, Tang W H, Wu Z Y and Liu Z F 2005 Finely tuning metallic nanogap size with electrode deposition by utilizing high-frequency impedance in feedback Angew. Chem. Int. Edn 44 7771–5.
DOI: 10.1002/anie.200502680
Google Scholar
[5]
Fischbein M D and Drndic M 2007 Sub-10 nm device fabrication in a transmission electron microscope Nano Lett. 7 1329–37.
DOI: 10.1021/nl0703626
Google Scholar
[6]
Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Dependence of single-molecule junction conductance on molecular conformation Nature 442 904–7.
DOI: 10.1038/nature05037
Google Scholar
[7]
Kushmerick J G, Naciri J, Yang J C and Shashidhar R 2003 Conductance scaling of molecular wires Nano Lett. 3 897–900.
DOI: 10.1021/nl034201n
Google Scholar
[8]
Fischbein M D and Drndic M 2006 Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures Appl. Phys. Lett. 88 063116.
DOI: 10.1063/1.2172292
Google Scholar
[9]
Park H, Lim A K L, Alivisatos A P, Park J and McEuen P L1999 Fabrication of metallic electrodes with nanometer separation by electromigration Appl. Phys. Lett. 75 301–3.
DOI: 10.1063/1.124354
Google Scholar
[10]
Chen F, Qing Q, Ren L, Wu Z Y and Liu Z F2005 Electrochemical approach for fabricating nanogap electrodes with well controllable separation Appl. Phys. Lett. 86 12310519J. Phys.: Condens. Matter 20 (2008) 374116 N Prokopuk and K-A Son.
DOI: 10.1063/1.1871361
Google Scholar
[11]
Kubatkin S, Danilov A, Hjort M, Cornil J, Bredas J-L, Stuhr-Hansen N, Hedegard P and Bjornholm T 2003 Single-electron transistor of a single organic molecule with access to several redox states Nature 425 698–701.
DOI: 10.1038/nature02010
Google Scholar
[12]
Gazzadi G C, Angeli E, Facci P and Frabboni S 2006 Electrical characterization and Auger depth profiling of nanogap electrodes fabricated by I-2-assisted focused ion beam Appl. Phys. Lett. 89 173112.
DOI: 10.1063/1.2364833
Google Scholar
[13]
Mimura K, Ara M and Tada H 2007 Preparation of nanogap electrodes of silicon by chemical etching Mol. Cryst. Liq. Cryst. 472 453–7 calame. unibas. ch.
DOI: 10.1080/15421400701544943
Google Scholar
[14]
Hsueh C-C, Lee M-T, Freund M S and Ferguson G S 2000 Electrochemically directed self-assembly of gold Angew. Chem. Int. Edn 39 1227–30.
DOI: 10.1002/(sici)1521-3773(20000403)39:7<1227::aid-anie1227>3.0.co;2-f
Google Scholar
[15]
nano technology today. blogspot. com, people. ccmr. cornell. edu, web. sma. nus. edu. sg, calame. unibas. ch, www. google. com , www2. fz-juelich. de.
Google Scholar
[16]
Lortscher E, Ciszek J W, Tour J M and Riel H 2006 Reversible and controllable switching of a single molecule junction Small 2 973–7.
DOI: 10.1002/smll.200600101
Google Scholar
[17]
Gruter L, Gonzalez M T, Huber R, Calame M and Schonenberger C 2005 Electrical conductance of atomic contacts in liquid environments Small 1067–70.
DOI: 10.1002/smll.200500145
Google Scholar
[18]
Giacalone F et al 2007 Tetra thia fulvalene-based molecular nanowires Chem. Commun. 4854–6.
Google Scholar
[19]
Trouwborst M L, van der Molen S J and van Wees B J 2006The role of Joule heating in the formation of nanogaps by electromigration J. Appl. Phys. 99 114316.
DOI: 10.1063/1.2203410
Google Scholar
[20]
Esen G and Fuhrer M S 2005 Temperature control of electromigration to form gold nanogap junctions Appl. Phys. Lett. 87 263101.
DOI: 10.1063/1.2149174
Google Scholar
[21]
Ramachandran G K, Edelstein M D, Blackburn D L, Suehle J S, Vogel E M and Richter C A 2005 Nanometre gaps in gold wires are formed by the rmal migration Nanotechnology 16 1294–9.
DOI: 10.1088/0957-4484/16/8/052
Google Scholar
[22]
Johnston D E, Strachan D R and Johnson A T C 2007 Parallel fabrication of nanogap electrodes Nano Lett. 7 2774–7.
DOI: 10.1021/nl0713169
Google Scholar
[23]
Park J et al 2002 Coulomb blockade and the Kondo effect in single-atom transistors Nature 417 722–5.
Google Scholar
[24]
Noguchi Y, Nagase T, Ueda R, Kamikado T, Kubota T and Mashiko S 2007 Fowler–Nordheim tunneling in electromigrated break junctions with porphyrin molecules Japan. J. Appl. Phys. 1 46 2683–6.
DOI: 10.1143/jjap.46.2683
Google Scholar
[25]
Keane Z K, Ciszek J W, Tour J M and Natelson D 2006 Three-terminal devices to examine single-molecule conductance switching Nano Lett. 6 1518–21.
DOI: 10.1021/nl061117+
Google Scholar
[26]
Strachan D R, Smith D E, Fischbein M D, Johnston D E, Guiton B S, Drndic M, Bonnell D A and Johnson A T 2006 Clean electromigrated nanogaps imaged by transmission electron microscopy Nano Lett. 6 441–4.
DOI: 10.1021/nl052302a
Google Scholar
[27]
O'Neill K, Osorio E A and van der Zant H S J 2007 Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes Appl. Phys. Lett. 90 133109.
DOI: 10.1063/1.2716989
Google Scholar
[28]
Kayashima S, Takahashi K, Motoyama M and Shirakashi J I 2007 Control of tunnel resistance of nanogaps by field-emission-induced electromigration Japan. J. Appl. Phys. 2 46 L907–9.
DOI: 10.1143/jjap.46.l907
Google Scholar
[29]
Shibata K, Buizert C, Oiwa A, Hirakawa K and Tarucha S 2007 Lateral electron tunneling through single self-assembled In As quantum dots coupled to superconducting nanogap electrodes Appl. Phys. Lett. 91 112102.
DOI: 10.1063/1.2779970
Google Scholar
[30]
Araki K, Endo H, Tanaka H and Ogawa T 2004 Multi-curve fitting analysis of temperature-dependent I–V curves of poly-hexa thienylphenanthroline-bridged nanogap electrodes Japan. J. Appl. Phys. 2 43 L634–6.
DOI: 10.1143/jjap.43.l634
Google Scholar
[31]
Kronholz S, Karthauser S, van der Hart A, Wand lowski T and Waser R 2006 Metallic nanogaps with access windows for liquid based systems Micro electron. J. 37 591–4.
DOI: 10.1016/j.mejo.2005.09.031
Google Scholar
[32]
Higuchi Y, Ohgami N, Akai-Kasaya M, Saito A, Aono M and Kuwahara Y 2006 Application of simple mechanical polishing to fabrication of nanogap flat electrodes Japan. J. Appl. Phys. 2 45 L145–7.
DOI: 10.1143/jjap.45.l145
Google Scholar
[32]
Sedgwick T O, Broers A N and Agule B J 1972 A novel method for fabrication of ultrafine metal lines by electron beams J. Electro chem. Soc. 119 1769–71.
DOI: 10.1149/1.2404096
Google Scholar
[33]
Go to T, Degawa K, Inokawa H, Furukawa K, Nakashima H, Sumitomo K, Aoki T and Torimitsu K 2006 Molecular-mediated single-electron devices operating at room temperature Japan. J. Appl. Phys. 1 45 4285–9.
DOI: 10.1143/jjap.45.4285
Google Scholar
[34]
Kanda A, Wada M, Hamamo to Y and Ootuka Y 2005 Simple and controlled fabrication of nanoscale gaps using double-angle evaporation Physica E 29 707–11.
DOI: 10.1016/j.physe.2005.06.065
Google Scholar
[35]
De Poortere E P, Stormer H L, Huang L M, Wind S J, O'Brien S, Huang M and Hone J 2006 1-to 2 nm-wide nanogaps fabricated with single-walled carbon nano tube shadow masks J. Vac. Sci. Technol. B 24 3213–6.
DOI: 10.1116/1.2375081
Google Scholar
[36]
De Poortere E P, Stormer H L, Huang L M, Wind S J, O' Brien S, Huang M and Hone J 2006 Single-walled carbon nanotubes as shadow masks for nanogap fabrication Appl. Phys. Lett. 88 143124.
DOI: 10.1063/1.2192636
Google Scholar
[37]
Chen Z, Hu W C, Guo J and Saito K 2004 Fabrication of nano electrodes based on controlled placement of carbon nanotubes using alternating-current electric field J. Vac. Sci. Technol. B 22 776–80.
DOI: 10.1116/1.1689307
Google Scholar
[38]
Chopra N, Xu W T, De Long L E and Hinds B J 2005 Incident angle dependence of nanogap size in suspended 20J. Phys.: Condens. Matter 20 (2008) 374116 N Prokopuk and K-A Son carbon nanotube shadow lithography Nanotechnology16 133–6.
DOI: 10.1088/0957-4484/16/1/027
Google Scholar
[39]
Th. S. Dhahi U. Hashim, and N. M. Ahmed Science of Advanced Materials Vol. 3, 233–238, (2011).
Google Scholar
[40]
Shigeto K, Kawamura M, Kasumov A Y, Tsukagoshi K, Kono K and Aoyagi Y 2006 Reproducible formation of nanoscale-gap electrodes for single-molecule measurements by combination of FIB deposition and tunneling current detection Micro electron. Eng. 83 1471–3.
DOI: 10.1016/j.mee.2006.01.166
Google Scholar
[41]
Nagase T, Gamo K, Ueda R, Kubota T and Mashiko S 2006 Maskless fabrication of nanogap electrodes by using Ga-focused ion beam etching J. Microlith. Micro fab. Microsyst. 5 011006.
DOI: 10.1117/1.2172614
Google Scholar
[42]
Huang L, Xu L, Zhang H Q and Gu N 2002 Fabrication of a nano-scale gap by selective chemical deposition Chem. Commun. 72–3.
DOI: 10.1039/b109189c
Google Scholar
[43]
Li C Z, He H X and Tao N J 2000 Quantized tunneling current in the metallic nanogaps formed by electrode dposition and etching Appl. Phys. Lett. 77 3995–7.
DOI: 10.1063/1.1332406
Google Scholar
[44]
Kashimura Y, Nakashima H, Furukawa K and Torimitsu K 2003 Fabrication of nano-gap electrodes using electroplating technique Thin Solid Films 438 317–21.
DOI: 10.1016/s0040-6090(03)00737-5
Google Scholar
[45]
Narambuena C F, Del Popolo M G and Leiva E P M 2003 On the reasons for stepwise changes in the tunneling current across metallic nanogaps Nano Lett. 3 1633–7.
DOI: 10.1021/nl034474i
Google Scholar
[46]
He H X, Boussaad S, Xu B Q, Li C Z and Tao N J 2002 Electrochemical fabrication of atomically thin metallic wires and electrodes separated with molecular-scale gaps J. Electroanal. Chem. 522 167–72.
DOI: 10.1016/s0022-0728(02)00692-7
Google Scholar
[47]
Chen F, Qing Q, Ren L, Tong L M, Wu Z Y and Liu Z F 2007 Formation of nanogaps by nanoscale Cu electrode dposition and dissolution Electrochim. Acta 52 4210–4.
DOI: 10.1016/j.electacta.2006.11.041
Google Scholar
[48]
Meszaros G, Kronholz S, Karth auser S, Mayer D and Wand lowski T 2007 Electrochemical fabrication and characterization of nano contacts and nm-sized gaps Appl. Phys. A 87 569–75.
DOI: 10.1007/s00339-007-3903-2
Google Scholar
[49]
Hatzor A and Weiss P S 2001 Molecular rulers for scaling down nanostructures Science 291 1019–20.
DOI: 10.1126/science.1057553
Google Scholar
[50]
Negishi R, Hasegawa T, Terabe K, Aono M, Ebihara T, Tanaka H and Ogawa T 2006 Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques Appl. Phys. Lett 88.
DOI: 10.1063/1.2209208
Google Scholar
[51]
Yoshiaki Kashimura, Hiroshi Nakashima, Kazuaki Furukawa, Keiichi Torimitsu Fabrication of nano-gap electrodes using electroplating technique 0040-6090/03/- see front matter 2003 Elsevier Science B.V. doi: 10. 1016/S0040-6090(03)00737-5.
DOI: 10.1016/s0040-6090(03)00737-5
Google Scholar