A Brief Review of the Current Technologies Used for the Fabrication of Metal-Molecule-Metal Junction Electrodes

Article Preview

Abstract:

Fabrication techniques for Metal-molecule-metal junction electrodes suitable to study electron tunneling through metal junctions are reviewed. The applications of current technologies such as mechanical break junction, electromigration, shadow mask lithography, focused ion beam deposition, chemical and electrochemical plating, electron-beam lithography, in fabricating vacant junction electrodes are briefly described. For biomolecular sensing applications, the size of the junction electrodes must be small enough to allow the biomolecule inserted into the junction space to connect both leads to keep the molecules in a relaxed and undistorted state. A significant advantage of using Metal-molecule-metal junction electrodes devices is that the junction can be characterized with and without the molecule in place. Any electrical artifacts introduced by the electrode fabrication process are more easily deconvoluted from the intrinsic properties of the molecule.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

867-877

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Likharev K 2003 Nano and Giga Challenges in Microelectronics ed J Greer, A Korkin and J Labanowski (Amsterdam: Elsevier).

DOI: 10.1016/b978-044451494-3/50000-7

Google Scholar

[2] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1996Conductance of a molecular junction Science 278 252–4.

Google Scholar

[3] Liang W, Shores M P, Bockrath M, Long J R and Park H 2002Kondo resonance in a single-molecule transistor Nature 417 725–8.

DOI: 10.1038/nature00790

Google Scholar

[4] Qing Q, Chen F, Li P G, Tang W H, Wu Z Y and Liu Z F 2005 Finely tuning metallic nanogap size with electrode deposition by utilizing high-frequency impedance in feedback Angew. Chem. Int. Edn 44 7771–5.

DOI: 10.1002/anie.200502680

Google Scholar

[5] Fischbein M D and Drndic M 2007 Sub-10 nm device fabrication in a transmission electron microscope Nano Lett. 7 1329–37.

DOI: 10.1021/nl0703626

Google Scholar

[6] Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Dependence of single-molecule junction conductance on molecular conformation Nature 442 904–7.

DOI: 10.1038/nature05037

Google Scholar

[7] Kushmerick J G, Naciri J, Yang J C and Shashidhar R 2003 Conductance scaling of molecular wires Nano Lett. 3 897–900.

DOI: 10.1021/nl034201n

Google Scholar

[8] Fischbein M D and Drndic M 2006 Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures Appl. Phys. Lett. 88 063116.

DOI: 10.1063/1.2172292

Google Scholar

[9] Park H, Lim A K L, Alivisatos A P, Park J and McEuen P L1999 Fabrication of metallic electrodes with nanometer separation by electromigration Appl. Phys. Lett. 75 301–3.

DOI: 10.1063/1.124354

Google Scholar

[10] Chen F, Qing Q, Ren L, Wu Z Y and Liu Z F2005 Electrochemical approach for fabricating nanogap electrodes with well controllable separation Appl. Phys. Lett. 86 12310519J. Phys.: Condens. Matter 20 (2008) 374116 N Prokopuk and K-A Son.

DOI: 10.1063/1.1871361

Google Scholar

[11] Kubatkin S, Danilov A, Hjort M, Cornil J, Bredas J-L, Stuhr-Hansen N, Hedegard P and Bjornholm T 2003 Single-electron transistor of a single organic molecule with access to several redox states Nature 425 698–701.

DOI: 10.1038/nature02010

Google Scholar

[12] Gazzadi G C, Angeli E, Facci P and Frabboni S 2006 Electrical characterization and Auger depth profiling of nanogap electrodes fabricated by I-2-assisted focused ion beam Appl. Phys. Lett. 89 173112.

DOI: 10.1063/1.2364833

Google Scholar

[13] Mimura K, Ara M and Tada H 2007 Preparation of nanogap electrodes of silicon by chemical etching Mol. Cryst. Liq. Cryst. 472 453–7 calame. unibas. ch.

DOI: 10.1080/15421400701544943

Google Scholar

[14] Hsueh C-C, Lee M-T, Freund M S and Ferguson G S 2000 Electrochemically directed self-assembly of gold Angew. Chem. Int. Edn 39 1227–30.

DOI: 10.1002/(sici)1521-3773(20000403)39:7<1227::aid-anie1227>3.0.co;2-f

Google Scholar

[15] nano technology today. blogspot. com, people. ccmr. cornell. edu, web. sma. nus. edu. sg, calame. unibas. ch, www. google. com , www2. fz-juelich. de.

Google Scholar

[16] Lortscher E, Ciszek J W, Tour J M and Riel H 2006 Reversible and controllable switching of a single molecule junction Small 2 973–7.

DOI: 10.1002/smll.200600101

Google Scholar

[17] Gruter L, Gonzalez M T, Huber R, Calame M and Schonenberger C 2005 Electrical conductance of atomic contacts in liquid environments Small 1067–70.

DOI: 10.1002/smll.200500145

Google Scholar

[18] Giacalone F et al 2007 Tetra thia fulvalene-based molecular nanowires Chem. Commun. 4854–6.

Google Scholar

[19] Trouwborst M L, van der Molen S J and van Wees B J 2006The role of Joule heating in the formation of nanogaps by electromigration J. Appl. Phys. 99 114316.

DOI: 10.1063/1.2203410

Google Scholar

[20] Esen G and Fuhrer M S 2005 Temperature control of electromigration to form gold nanogap junctions Appl. Phys. Lett. 87 263101.

DOI: 10.1063/1.2149174

Google Scholar

[21] Ramachandran G K, Edelstein M D, Blackburn D L, Suehle J S, Vogel E M and Richter C A 2005 Nanometre gaps in gold wires are formed by the rmal migration Nanotechnology 16 1294–9.

DOI: 10.1088/0957-4484/16/8/052

Google Scholar

[22] Johnston D E, Strachan D R and Johnson A T C 2007 Parallel fabrication of nanogap electrodes Nano Lett. 7 2774–7.

DOI: 10.1021/nl0713169

Google Scholar

[23] Park J et al 2002 Coulomb blockade and the Kondo effect in single-atom transistors Nature 417 722–5.

Google Scholar

[24] Noguchi Y, Nagase T, Ueda R, Kamikado T, Kubota T and Mashiko S 2007 Fowler–Nordheim tunneling in electromigrated break junctions with porphyrin molecules Japan. J. Appl. Phys. 1 46 2683–6.

DOI: 10.1143/jjap.46.2683

Google Scholar

[25] Keane Z K, Ciszek J W, Tour J M and Natelson D 2006 Three-terminal devices to examine single-molecule conductance switching Nano Lett. 6 1518–21.

DOI: 10.1021/nl061117+

Google Scholar

[26] Strachan D R, Smith D E, Fischbein M D, Johnston D E, Guiton B S, Drndic M, Bonnell D A and Johnson A T 2006 Clean electromigrated nanogaps imaged by transmission electron microscopy Nano Lett. 6 441–4.

DOI: 10.1021/nl052302a

Google Scholar

[27] O'Neill K, Osorio E A and van der Zant H S J 2007 Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes Appl. Phys. Lett. 90 133109.

DOI: 10.1063/1.2716989

Google Scholar

[28] Kayashima S, Takahashi K, Motoyama M and Shirakashi J I 2007 Control of tunnel resistance of nanogaps by field-emission-induced electromigration Japan. J. Appl. Phys. 2 46 L907–9.

DOI: 10.1143/jjap.46.l907

Google Scholar

[29] Shibata K, Buizert C, Oiwa A, Hirakawa K and Tarucha S 2007 Lateral electron tunneling through single self-assembled In As quantum dots coupled to superconducting nanogap electrodes Appl. Phys. Lett. 91 112102.

DOI: 10.1063/1.2779970

Google Scholar

[30] Araki K, Endo H, Tanaka H and Ogawa T 2004 Multi-curve fitting analysis of temperature-dependent I–V curves of poly-hexa thienylphenanthroline-bridged nanogap electrodes Japan. J. Appl. Phys. 2 43 L634–6.

DOI: 10.1143/jjap.43.l634

Google Scholar

[31] Kronholz S, Karthauser S, van der Hart A, Wand lowski T and Waser R 2006 Metallic nanogaps with access windows for liquid based systems Micro electron. J. 37 591–4.

DOI: 10.1016/j.mejo.2005.09.031

Google Scholar

[32] Higuchi Y, Ohgami N, Akai-Kasaya M, Saito A, Aono M and Kuwahara Y 2006 Application of simple mechanical polishing to fabrication of nanogap flat electrodes Japan. J. Appl. Phys. 2 45 L145–7.

DOI: 10.1143/jjap.45.l145

Google Scholar

[32] Sedgwick T O, Broers A N and Agule B J 1972 A novel method for fabrication of ultrafine metal lines by electron beams J. Electro chem. Soc. 119 1769–71.

DOI: 10.1149/1.2404096

Google Scholar

[33] Go to T, Degawa K, Inokawa H, Furukawa K, Nakashima H, Sumitomo K, Aoki T and Torimitsu K 2006 Molecular-mediated single-electron devices operating at room temperature Japan. J. Appl. Phys. 1 45 4285–9.

DOI: 10.1143/jjap.45.4285

Google Scholar

[34] Kanda A, Wada M, Hamamo to Y and Ootuka Y 2005 Simple and controlled fabrication of nanoscale gaps using double-angle evaporation Physica E 29 707–11.

DOI: 10.1016/j.physe.2005.06.065

Google Scholar

[35] De Poortere E P, Stormer H L, Huang L M, Wind S J, O'Brien S, Huang M and Hone J 2006 1-to 2 nm-wide nanogaps fabricated with single-walled carbon nano tube shadow masks J. Vac. Sci. Technol. B 24 3213–6.

DOI: 10.1116/1.2375081

Google Scholar

[36] De Poortere E P, Stormer H L, Huang L M, Wind S J, O' Brien S, Huang M and Hone J 2006 Single-walled carbon nanotubes as shadow masks for nanogap fabrication Appl. Phys. Lett. 88 143124.

DOI: 10.1063/1.2192636

Google Scholar

[37] Chen Z, Hu W C, Guo J and Saito K 2004 Fabrication of nano electrodes based on controlled placement of carbon nanotubes using alternating-current electric field J. Vac. Sci. Technol. B 22 776–80.

DOI: 10.1116/1.1689307

Google Scholar

[38] Chopra N, Xu W T, De Long L E and Hinds B J 2005 Incident angle dependence of nanogap size in suspended 20J. Phys.: Condens. Matter 20 (2008) 374116 N Prokopuk and K-A Son carbon nanotube shadow lithography Nanotechnology16 133–6.

DOI: 10.1088/0957-4484/16/1/027

Google Scholar

[39] Th. S. Dhahi U. Hashim, and N. M. Ahmed Science of Advanced Materials Vol. 3, 233–238, (2011).

Google Scholar

[40] Shigeto K, Kawamura M, Kasumov A Y, Tsukagoshi K, Kono K and Aoyagi Y 2006 Reproducible formation of nanoscale-gap electrodes for single-molecule measurements by combination of FIB deposition and tunneling current detection Micro electron. Eng. 83 1471–3.

DOI: 10.1016/j.mee.2006.01.166

Google Scholar

[41] Nagase T, Gamo K, Ueda R, Kubota T and Mashiko S 2006 Maskless fabrication of nanogap electrodes by using Ga-focused ion beam etching J. Microlith. Micro fab. Microsyst. 5 011006.

DOI: 10.1117/1.2172614

Google Scholar

[42] Huang L, Xu L, Zhang H Q and Gu N 2002 Fabrication of a nano-scale gap by selective chemical deposition Chem. Commun. 72–3.

DOI: 10.1039/b109189c

Google Scholar

[43] Li C Z, He H X and Tao N J 2000 Quantized tunneling current in the metallic nanogaps formed by electrode dposition and etching Appl. Phys. Lett. 77 3995–7.

DOI: 10.1063/1.1332406

Google Scholar

[44] Kashimura Y, Nakashima H, Furukawa K and Torimitsu K 2003 Fabrication of nano-gap electrodes using electroplating technique Thin Solid Films 438 317–21.

DOI: 10.1016/s0040-6090(03)00737-5

Google Scholar

[45] Narambuena C F, Del Popolo M G and Leiva E P M 2003 On the reasons for stepwise changes in the tunneling current across metallic nanogaps Nano Lett. 3 1633–7.

DOI: 10.1021/nl034474i

Google Scholar

[46] He H X, Boussaad S, Xu B Q, Li C Z and Tao N J 2002 Electrochemical fabrication of atomically thin metallic wires and electrodes separated with molecular-scale gaps J. Electroanal. Chem. 522 167–72.

DOI: 10.1016/s0022-0728(02)00692-7

Google Scholar

[47] Chen F, Qing Q, Ren L, Tong L M, Wu Z Y and Liu Z F 2007 Formation of nanogaps by nanoscale Cu electrode dposition and dissolution Electrochim. Acta 52 4210–4.

DOI: 10.1016/j.electacta.2006.11.041

Google Scholar

[48] Meszaros G, Kronholz S, Karth auser S, Mayer D and Wand lowski T 2007 Electrochemical fabrication and characterization of nano contacts and nm-sized gaps Appl. Phys. A 87 569–75.

DOI: 10.1007/s00339-007-3903-2

Google Scholar

[49] Hatzor A and Weiss P S 2001 Molecular rulers for scaling down nanostructures Science 291 1019–20.

DOI: 10.1126/science.1057553

Google Scholar

[50] Negishi R, Hasegawa T, Terabe K, Aono M, Ebihara T, Tanaka H and Ogawa T 2006 Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques Appl. Phys. Lett 88.

DOI: 10.1063/1.2209208

Google Scholar

[51] Yoshiaki Kashimura, Hiroshi Nakashima, Kazuaki Furukawa, Keiichi Torimitsu Fabrication of nano-gap electrodes using electroplating technique 0040-6090/03/- see front matter 2003 Elsevier Science B.V. doi: 10. 1016/S0040-6090(03)00737-5.

DOI: 10.1016/s0040-6090(03)00737-5

Google Scholar