Study on Silk Fibroin/ Propylene Glycol Blend Films

Article Preview

Abstract:

Silk fibroin/ propylene glycol blend films were prepared by mixing silk fibroin and propylene glycol (PG) at different ratios. X-ray diffraction and infrared spectroscopy were used to investigate the structure of the blend films, and the results showed that with the content of PG increasing, the structure of the blend films was silkⅠcrystalline structure and then was gradually changed into the crystalline structure of Silk II. The dissolution loss rate was greatly improved, and the transmittance was still kept in good degree. Besides, the blend films had best flexibility when the weight of PG/ SF was 3/10. The fibroblast was culviated on it to evaluate its biocompatibility. The results showed that the blend films could support the attachment and growth of flbroblast cells as a substratum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

785-790

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Noishiki, Y. Nishiyama, M. Wada, S. Kuga and J. Magoshi: J. Appl. Polym. Sci. Vol. 86 (2002), p.3425.

DOI: 10.1002/app.11370

Google Scholar

[2] B.D. Lawrence, S. Wharram, J.A. Kluge, G.G. Leisk, F.G. Omenetto, M.I. Rosenblatt and D.L. Kaplan: Macromol. Biosci. Vol. 10 (2010), p.393.

DOI: 10.1002/mabi.200900294

Google Scholar

[3] C. Vepari and D.L. Kaplan: Prog. Polym. Sci. Vol. 32 (2007), p.992.

Google Scholar

[4] K. Numata and D.L. Kaplan: Adv. Drug Delivery Rev. Vol. 62 (2010), p.1498.

Google Scholar

[5] F.G. Omenetto and D.L. Kaplan: Science. Vol. 329 (2010), p.530.

Google Scholar

[6] M. Tsukada, Y. Cotoh, M. Nacura, N. Minora, N. Kasai and C. Freddi: J. Polym. Sci., Part B: Polym. Phys. Vol. 32 (1994), p.962.

Google Scholar

[7] H. Kweon, H.C. Ha, I.C. Um and Y.H. Park: J. Appl. Polym. Sci. Vol. 80 (2001), p.928.

Google Scholar

[8] S.J. Park, K.Y. Lee, W.S. Ha and S.Y. Park: J. Appl. Polym. Sci. Vol.74 (1999), p.2571.

Google Scholar

[9] J. O'Brien, I. Wilson, T. Orton and F. Pognan: Eur. J. Biochem. Vol.267 (2000), p.5422.

Google Scholar

[10] S. Anoopkumar-Dukie, J.B. Carey, T. Conere, E. O'Sullivan, F.N.van. Pelt and A. Allshire: Br. J. Radiol. Vol.78 (2005), p.945.

DOI: 10.1259/bjr/54004230

Google Scholar

[11] M. Li, M. Ogisob and N. Minourab: Biomaterials. Vol. 24 (2003), p.359.

Google Scholar

[12] Q.N. Wei, A.M. Huang, L. Ma, Z. Huang, X. Huang, P.P Qiang, Z.P. Gong and L. Zhang: J. Appl. Polym. Sci. Vol. 125 (2012), p. E479

Google Scholar

[13] S.W. Ha, A.E. Tonelli and S.M. Hudson: Biomacromolecules. Vol. 6 (2005), p.1726

Google Scholar

[14] Q. Lu, B. Zhang, M. Li, B. Zuo, D.L. Kaplan, Y. Huang and H. Zhu: Biomacromolecules. Vol. 12 (2011), p.1081.

Google Scholar

[15] X. Hu, D. Kaplan and P. Cebe: Macromolecules. Vol. 39 (2006), p.6164.

Google Scholar

[16] T.Van.Den. Berg and K. Tan: Vision. Res. Vol. 34 (1994), p.1454.

Google Scholar