Estimating the Uncertainty of a Multilayer Perceptron Using the Monte Carlo Method

Article Preview

Abstract:

Artificial neural networks have become a powerful modeling tool. However, although they obtain an output with very good accuracy, they provide no information about the uncertainty of the network or its coverage intervals. This study describes the application of the Monte Carlo method to obtain the output uncertainty and coverage intervals of a particular type of artificial neural network: the multilayer perceptron.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-329

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Khosravi, S. Nahavandi, D. Creighton, A.F. Atiya, A comprehensive review of neural network-based prediction intervals and new advances, IEEE Trans. Neural Netw. 22 (2011) 1341-1356.

DOI: 10.1109/tnn.2011.2162110

Google Scholar

[2] M. Solaguren-Beascoa Fernández, J.A. Alegre Calderón, P.M. Bravo Díez, Implementation in MATLAB of the adaptative Monte Carlo method for the evaluation of measurement uncertainties, Accredit. Qual. Assur. 14 (2009) 95-106.

DOI: 10.1007/s00769-008-0475-6

Google Scholar

[3] E. Mazioumi, G. Rose, G. Currie, S. Moridpour, Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction, Eng. Appl. Artif. Intell. 24 (2011) 534-542.

DOI: 10.1016/j.engappai.2010.11.004

Google Scholar

[4] JCGM, Evaluation of measurement data. Supplement 1 to the Guide to the expression of uncertainty in measurement, – Propagation of distributions using a Monte Carlo method, first edition, Joint Committee for Guides in Metrology, (2008).

Google Scholar

[5] P. Priore, D. de la Fuente, R. Pino, J. Puente, Utilización de las redes neuronales en la toma de decisiones. Aplicación a un problema de secuenciación, Anales de Mecánica y Electricidad. 79 (2002) 28-34.

DOI: 10.37610/dyo.v0i28.163

Google Scholar

[6] K. Hornik, M. Stinchcombe, H. White, Multilayer Feedforward Networks are Universal Approximators, Neural Netw. 2 (1989) 359-366.

DOI: 10.1016/0893-6080(89)90020-8

Google Scholar

[7] T.Y. Lin, C.H. Tseng, Optimum design for artificial networks: an example in a bicycle derailleur system, Eng. Appl. Artif. Intell. 13 (2000) 3-14.

DOI: 10.1016/s0952-1976(99)00045-7

Google Scholar

[8] BIMP, IEC, IFCC, ISO, IUPAC, OILM, Guide to the Expression of Uncertainty in Measurement, second edition, International Organisation for Standardisation, Geneva, (1995).

Google Scholar

[9] T.J. Esward, A. Ginestous, P.M. Harris, I.D. Hill, A Monte Carlo Method for uncertainty evaluation implemented on a distributed computing system, Metrologia 44 (2007) 319-326.

DOI: 10.1088/0026-1394/44/5/008

Google Scholar

[10] T. Dimitrios, L. Meligotsidou, S. Karavoltsos, A. Burnetas, M. Dassenakis, M. Scoullos, Comparison of ISO-GUM and Monte Carlo methods for the evaluation of measurement uncertainty: Application to direct cadmium measurement in water by GFAAS, Talanta. 83 (2011).

DOI: 10.1016/j.talanta.2010.11.059

Google Scholar

[11] W. Bich, M.G. Cox, P.M. Harris, Evolution of the Guide to the Expression of Uncertainty in Measurement, Metrologia. 43 (2006) S161-S166.

DOI: 10.1088/0026-1394/43/4/s01

Google Scholar

[12] F. García Fernández, P. de Palacios, L. García Esteban, A. García-Iruela, B. González Rodrigo, E. Menasalvas, Prediction of MOR and MOE of structural plywood board using an artificial neural network and comparison with a multivariate regression model, Compos. Pt. B-Eng. (2012).

DOI: 10.1016/j.compositesb.2011.11.054

Google Scholar

[13] W. Sha, Comment on the issues of statistical modelling with particular reference to the use of artificial neural networks, Appl. Catal. A-Gen. 324 (2007) 87-89.

DOI: 10.1016/j.apcata.2007.02.053

Google Scholar

[14] B. Vanstone, G. Finnie, An empirical methodology for developing stockmarket trading systems using artificial neural networks, Expert Syst. Appl. 36 (2009) 6668-6680.

DOI: 10.1016/j.eswa.2008.08.019

Google Scholar

[15] C.M. Bishop, Neural networks for pattern recognition, Oxford University Press, Oxford, (1995).

Google Scholar