[1]
A. Khosravi, S. Nahavandi, D. Creighton, A.F. Atiya, A comprehensive review of neural network-based prediction intervals and new advances, IEEE Trans. Neural Netw. 22 (2011) 1341-1356.
DOI: 10.1109/tnn.2011.2162110
Google Scholar
[2]
M. Solaguren-Beascoa Fernández, J.A. Alegre Calderón, P.M. Bravo Díez, Implementation in MATLAB of the adaptative Monte Carlo method for the evaluation of measurement uncertainties, Accredit. Qual. Assur. 14 (2009) 95-106.
DOI: 10.1007/s00769-008-0475-6
Google Scholar
[3]
E. Mazioumi, G. Rose, G. Currie, S. Moridpour, Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction, Eng. Appl. Artif. Intell. 24 (2011) 534-542.
DOI: 10.1016/j.engappai.2010.11.004
Google Scholar
[4]
JCGM, Evaluation of measurement data. Supplement 1 to the Guide to the expression of uncertainty in measurement, – Propagation of distributions using a Monte Carlo method, first edition, Joint Committee for Guides in Metrology, (2008).
Google Scholar
[5]
P. Priore, D. de la Fuente, R. Pino, J. Puente, Utilización de las redes neuronales en la toma de decisiones. Aplicación a un problema de secuenciación, Anales de Mecánica y Electricidad. 79 (2002) 28-34.
DOI: 10.37610/dyo.v0i28.163
Google Scholar
[6]
K. Hornik, M. Stinchcombe, H. White, Multilayer Feedforward Networks are Universal Approximators, Neural Netw. 2 (1989) 359-366.
DOI: 10.1016/0893-6080(89)90020-8
Google Scholar
[7]
T.Y. Lin, C.H. Tseng, Optimum design for artificial networks: an example in a bicycle derailleur system, Eng. Appl. Artif. Intell. 13 (2000) 3-14.
DOI: 10.1016/s0952-1976(99)00045-7
Google Scholar
[8]
BIMP, IEC, IFCC, ISO, IUPAC, OILM, Guide to the Expression of Uncertainty in Measurement, second edition, International Organisation for Standardisation, Geneva, (1995).
Google Scholar
[9]
T.J. Esward, A. Ginestous, P.M. Harris, I.D. Hill, A Monte Carlo Method for uncertainty evaluation implemented on a distributed computing system, Metrologia 44 (2007) 319-326.
DOI: 10.1088/0026-1394/44/5/008
Google Scholar
[10]
T. Dimitrios, L. Meligotsidou, S. Karavoltsos, A. Burnetas, M. Dassenakis, M. Scoullos, Comparison of ISO-GUM and Monte Carlo methods for the evaluation of measurement uncertainty: Application to direct cadmium measurement in water by GFAAS, Talanta. 83 (2011).
DOI: 10.1016/j.talanta.2010.11.059
Google Scholar
[11]
W. Bich, M.G. Cox, P.M. Harris, Evolution of the Guide to the Expression of Uncertainty in Measurement, Metrologia. 43 (2006) S161-S166.
DOI: 10.1088/0026-1394/43/4/s01
Google Scholar
[12]
F. García Fernández, P. de Palacios, L. García Esteban, A. García-Iruela, B. González Rodrigo, E. Menasalvas, Prediction of MOR and MOE of structural plywood board using an artificial neural network and comparison with a multivariate regression model, Compos. Pt. B-Eng. (2012).
DOI: 10.1016/j.compositesb.2011.11.054
Google Scholar
[13]
W. Sha, Comment on the issues of statistical modelling with particular reference to the use of artificial neural networks, Appl. Catal. A-Gen. 324 (2007) 87-89.
DOI: 10.1016/j.apcata.2007.02.053
Google Scholar
[14]
B. Vanstone, G. Finnie, An empirical methodology for developing stockmarket trading systems using artificial neural networks, Expert Syst. Appl. 36 (2009) 6668-6680.
DOI: 10.1016/j.eswa.2008.08.019
Google Scholar
[15]
C.M. Bishop, Neural networks for pattern recognition, Oxford University Press, Oxford, (1995).
Google Scholar