Nonlinearity Errors in Heterodyne Interferometer: A Survey

Article Preview

Abstract:

As the most important error source in the heterodyne interferometer, the nonlinearity errors reduce the measurement accuracy in the nanometric or picometric measurement. This survey states both the definition of nonlinearity errors and the cause of the errors. Moreover, two kinds of methods for detection and compensation of the nonlinearity errors are also discussed respectively in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

511-514

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Quenelle RC. Nonlinearity in interferometric measurement. Hewlett Packard J 1983; 34: 3-13.

Google Scholar

[2] Sutton CM. Nonlinearity in length measurement using heterodyne laser Michelson interferometry. J Phy E 1987; 20: 1290-1292.

DOI: 10.1088/0022-3735/20/10/034

Google Scholar

[3] Hou W and Wilkenling G. Investigation and compensation of the nonlinearity of heterodyne interferometers. Precis Eng 1992; 14: 91-98.

Google Scholar

[4] Hou W and Zhao X. The drift of the nonlinearity of heterodyne interferometers. Precis Eng 1994; 16: 25-34.

Google Scholar

[5] Hou W,. Optical parts and the nonlinearity in heterodyne interferometers. Precis Eng 2006; 30: 337-346.

DOI: 10.1016/j.precisioneng.2005.11.005

Google Scholar

[6] Wu CM, Lawall J and Deslattes RD. Heterodyne interferometer with subatomic periodic nonlinearity. Appl Opt 1999; 38: 4089-4094.

DOI: 10.1364/ao.38.004089

Google Scholar

[7] Wu CM. Periodic nonlinearity resulting from ghost reflections in heterodyne interometry. Opt Commun 2003; 215: 17-23.

DOI: 10.1016/s0030-4018(02)02203-4

Google Scholar

[8] Lay OP and Dubovitsky S Polarization compensation: a passive approach to a reducing heterodyne interferometer nonlinearity. Opt Lett 2002; 27: 797-799.

DOI: 10.1364/ol.27.000797

Google Scholar

[9] Dubovitsky S, Lay OP, and Seidel DJ. Elimination of heterodyne interferometer nonlinearity by carrier phase modulation. Opt Lett 2002; 27: 619-621.

DOI: 10.1364/ol.27.000619

Google Scholar

[10] Yacoot A, Downs MJ. The use of X-ray interferometry to investigate the linearity of NPL differential plane mirror optical interferometer. Meas Sci Technol 2000; 11: 1126-1130.

DOI: 10.1088/0957-0233/11/8/305

Google Scholar

[11] Badami VG and Patterson R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precis Eng 2000; 24: 41-49.

DOI: 10.1016/s0141-6359(99)00026-4

Google Scholar

[12] Lawall J and Kessler E. Michelson interferometry with 10pm accuracy. Rev Sci Instrum 2000; 71: 2669-2676.

Google Scholar

[13] Schmitz TL and Kim HS. Monte Carlo evaluation of periodic error uncertainty. Precis Eng 2007; 31: 251-259.

DOI: 10.1016/j.precisioneng.2006.10.001

Google Scholar

[14] Chu D, and Ray A. Nonlinearity measurement and correction of metrology data from an interferometer system. Proc. of 4th Euspen Int. Conf 2004; 300–301.

Google Scholar

[15] Schmitz TL, Chu D, and Houck III L. First-order periodic error correction: validation for constant and nonconstant velocities with variable error magnitudes. Meas Sci Technol 2006; 17: 3195–3203.

DOI: 10.1088/0957-0233/17/12/001

Google Scholar

[16] Schmitz TL, Chu D, and Kim HS. First and second order periodic error measurement for non-constant velocity motions. Precis Eng 2009; 33: 353-361.

DOI: 10.1016/j.precisioneng.2008.10.001

Google Scholar

[17] Schmitz TL, Houck III L, Chu D, Kalem L. Bench-top setup for validation of real time, digital periodic error correction. Precis Eng 2006; 30: 306–313.

DOI: 10.1016/j.precisioneng.2005.10.001

Google Scholar

[18] Hu J, Hu H, and Ji Y. Detection method of nonlinearity errors by improved electrical subdivision algorithm in heterodyne interferometer. Opt. Express 2010; 18: 5831-5839.

DOI: 10.1364/oe.18.005831

Google Scholar

[19] Joo KN, Ellis JD, Buice ES, et al. High resolution heterodyne interferometer without detectable periodic nonlinearity. Opt Express 2010; 18: 1159-1165.

DOI: 10.1364/oe.18.001159

Google Scholar

[20] Hou W, Zhang Y, and Hu H. A simple technique for eliminating the nonlinearity of a heterodyne interferometer. Meas Sci Technol 2009; 20: 105303.

DOI: 10.1088/0957-0233/20/10/105303

Google Scholar