[1]
Quenelle RC. Nonlinearity in interferometric measurement. Hewlett Packard J 1983; 34: 3-13.
Google Scholar
[2]
Sutton CM. Nonlinearity in length measurement using heterodyne laser Michelson interferometry. J Phy E 1987; 20: 1290-1292.
DOI: 10.1088/0022-3735/20/10/034
Google Scholar
[3]
Hou W and Wilkenling G. Investigation and compensation of the nonlinearity of heterodyne interferometers. Precis Eng 1992; 14: 91-98.
Google Scholar
[4]
Hou W and Zhao X. The drift of the nonlinearity of heterodyne interferometers. Precis Eng 1994; 16: 25-34.
Google Scholar
[5]
Hou W,. Optical parts and the nonlinearity in heterodyne interferometers. Precis Eng 2006; 30: 337-346.
DOI: 10.1016/j.precisioneng.2005.11.005
Google Scholar
[6]
Wu CM, Lawall J and Deslattes RD. Heterodyne interferometer with subatomic periodic nonlinearity. Appl Opt 1999; 38: 4089-4094.
DOI: 10.1364/ao.38.004089
Google Scholar
[7]
Wu CM. Periodic nonlinearity resulting from ghost reflections in heterodyne interometry. Opt Commun 2003; 215: 17-23.
DOI: 10.1016/s0030-4018(02)02203-4
Google Scholar
[8]
Lay OP and Dubovitsky S Polarization compensation: a passive approach to a reducing heterodyne interferometer nonlinearity. Opt Lett 2002; 27: 797-799.
DOI: 10.1364/ol.27.000797
Google Scholar
[9]
Dubovitsky S, Lay OP, and Seidel DJ. Elimination of heterodyne interferometer nonlinearity by carrier phase modulation. Opt Lett 2002; 27: 619-621.
DOI: 10.1364/ol.27.000619
Google Scholar
[10]
Yacoot A, Downs MJ. The use of X-ray interferometry to investigate the linearity of NPL differential plane mirror optical interferometer. Meas Sci Technol 2000; 11: 1126-1130.
DOI: 10.1088/0957-0233/11/8/305
Google Scholar
[11]
Badami VG and Patterson R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precis Eng 2000; 24: 41-49.
DOI: 10.1016/s0141-6359(99)00026-4
Google Scholar
[12]
Lawall J and Kessler E. Michelson interferometry with 10pm accuracy. Rev Sci Instrum 2000; 71: 2669-2676.
Google Scholar
[13]
Schmitz TL and Kim HS. Monte Carlo evaluation of periodic error uncertainty. Precis Eng 2007; 31: 251-259.
DOI: 10.1016/j.precisioneng.2006.10.001
Google Scholar
[14]
Chu D, and Ray A. Nonlinearity measurement and correction of metrology data from an interferometer system. Proc. of 4th Euspen Int. Conf 2004; 300–301.
Google Scholar
[15]
Schmitz TL, Chu D, and Houck III L. First-order periodic error correction: validation for constant and nonconstant velocities with variable error magnitudes. Meas Sci Technol 2006; 17: 3195–3203.
DOI: 10.1088/0957-0233/17/12/001
Google Scholar
[16]
Schmitz TL, Chu D, and Kim HS. First and second order periodic error measurement for non-constant velocity motions. Precis Eng 2009; 33: 353-361.
DOI: 10.1016/j.precisioneng.2008.10.001
Google Scholar
[17]
Schmitz TL, Houck III L, Chu D, Kalem L. Bench-top setup for validation of real time, digital periodic error correction. Precis Eng 2006; 30: 306–313.
DOI: 10.1016/j.precisioneng.2005.10.001
Google Scholar
[18]
Hu J, Hu H, and Ji Y. Detection method of nonlinearity errors by improved electrical subdivision algorithm in heterodyne interferometer. Opt. Express 2010; 18: 5831-5839.
DOI: 10.1364/oe.18.005831
Google Scholar
[19]
Joo KN, Ellis JD, Buice ES, et al. High resolution heterodyne interferometer without detectable periodic nonlinearity. Opt Express 2010; 18: 1159-1165.
DOI: 10.1364/oe.18.001159
Google Scholar
[20]
Hou W, Zhang Y, and Hu H. A simple technique for eliminating the nonlinearity of a heterodyne interferometer. Meas Sci Technol 2009; 20: 105303.
DOI: 10.1088/0957-0233/20/10/105303
Google Scholar