[1]
Squires, T.M., Quake, S.R.: Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern physics. 2005; 77(3): 977-1026.
DOI: 10.1103/revmodphys.77.977
Google Scholar
[2]
Shan, C.X., Wang, D.C.: Experiment Study on Liquid Starting Pressure Gradient. Oil-Gasfield Surface Engineering. 2010; 29(4): 30-32(in Chinese).
Google Scholar
[3]
Hwang. Y.W., Kim, M.S.: The pressure drop in microtubes and the correlation development. International Journal of Heat Mass Transfer. 2006; 49: 1804-1812.
DOI: 10.1016/j.ijheatmasstransfer.2005.10.040
Google Scholar
[4]
Jiang, R.J., Song, F.Q., Li, H.M.: Flow Characteristics of Deionized Water in Microtubes. CHIN. PHYS. LETT. 2006; 23, 3305-3308.
Google Scholar
[5]
John A. Thomas, Alan J. H. McGaughey, Ottoleo Kuter-Arneback: Pressure-driven water flow through carbonnanotubes: Insights from molecular dynamics simulation. International Journal of Thermal Sciences. 2010; 49(2): 281-289.
DOI: 10.1016/j.ijthermalsci.2009.07.008
Google Scholar
[6]
YIN, C.Y., Mohanad, E.H.: Simulation of Liquid Argon Flow along a Nanochannel: Effect of Applied Force. Chinese Journal of Chemical Engineering. 2009; 17(5): 734-738.
DOI: 10.1016/s1004-9541(08)60269-4
Google Scholar
[7]
David, M.H., Christian, S., Dominik, H. et al.: Water Slippage versus Contact Angle: A Quasiuniversal Relationship. Physical Review Letters. 2008; 101: 226101.
Google Scholar
[8]
Ziarani, A.S., Mohamad, A.A.: A molecular dynamics study of perturbed Poiseuille flow in a nanochannel. Microfluid Nanofluid. 2005; 2: 12–20.
DOI: 10.1007/s10404-005-0036-9
Google Scholar
[9]
Haddad, O. M., Al-Nimr, M. A., Al-Omary, J. Sh.: Forced convection of gaseous slip-flow in porous micro-channels under Local Thermal Non-Equilibrium conditions. Transport in Porous Media. 2007; 67(3): 453-471.
DOI: 10.1007/s11242-006-9036-9
Google Scholar
[10]
Choi, C.H., Kim, C.J.: Large Slip of Aqueous Liquid Flow over a Nanoengineered Superhydrophobic Surface. Physical Review letters. 2006; 96: 066001.
DOI: 10.1103/physrevlett.96.066001
Google Scholar
[11]
Haddad, O. M., Al-Nimr, M. A., Abuzaid, M. M.: Effect of periodically oscillating driving force on basic microflows in porous media. Journal of Porous Media, 2006; 9(7): 695-707.
DOI: 10.1615/jpormedia.v9.i7.80
Google Scholar
[12]
Kamali, R., Kharazmi, A.: Molecular dynamics simulation of surface roughness effects. International Journal of Thermal Sciences. 2011; 50(3): 226-232.
DOI: 10.1016/j.ijthermalsci.2010.05.004
Google Scholar
[13]
Lennard-Jones J. E. On the Determination of Molecular Fields. II. From the Equation of State of a Gas. Proceedings of the Royal Society of London, Series A. 1924; 106: 463-477.
Google Scholar
[14]
Nagayama, G., Tsuruta, T., Cheng, P.: Molecular dynamics simulation on bubble formation in a nanochannel. International Journal of Heat and Mass Transfer. 2006; 49: 4437-4443.
DOI: 10.1016/j.ijheatmasstransfer.2006.04.030
Google Scholar
[15]
Cao, B.Y., Chen, M., Guo, Z.Y.: Velocity slip of liquid flow in nanochannel. Aata Physica Sinica. 2006; 55(10): 5305-5310.
Google Scholar