Tilted Bulk Disordered Distribution Cosmological Model

Article Preview

Abstract:

Bianchi type I bulk viscous fluid tilted cosmological model filled with disordered radiation and heat conduction is investigated. We assume that (constant), where is the coefficient of bulk viscosity and  is the expansion in the model. Here, we assume a linear relation between shear and expansion i.e. =constant, which leads to A=BC, where A, B, C are metric potentials. The physical and geometrical aspects of the model in the presence and absence of bulk viscosity are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

635-640

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] King, AR and Ellis, GFR. Comm. Math. Phys. 1973; 31: 209.

Google Scholar

[2] Ellis, GFR and King, AR. Comm. Math. Phys. 1974; 38: 119.

Google Scholar

[3] Ellis, GFR and Baldwin, J. Mon. Not. Roy. Ast. Soc. 1984; 206: 377.

Google Scholar

[4] Collins, CB and Stewart, JM. Mon. Not. Roy. Astron. Soc. 1971; 153: 419-434.

Google Scholar

[5] Nightingale, JD. Astrophys. J. 1973; 185: 105-114.

Google Scholar

[6] Misner, CW. Nature 1967; 214(5083): 40-41.

Google Scholar

[7] Misner, CW. Astrophys. J. 1968; 151: 431-457.

Google Scholar

[8] Padmanabhan, T and Chitre, SM. Phys. Letts. A. 1987; 120: 433.

Google Scholar

[9] Johri VB and Sudarshan, R. Phys. Lett. A. 1988; 132: 316-320.

Google Scholar

[10] References and further reading may be available for this article. To view references and further reading you must purchase Maartens, R. Class. Quantum Gravit. 1995; 12: 1455.

Google Scholar

[11] Zimdahl, W. Phys. Rev. D. 1996; 53: 5483-5493.

Google Scholar

[12] Kalyani, D and Singh, GP Eds V de Sabbata and Singh, T. Bulk Viscous Models in Lyra's Geometry; New Directions in Relativity and Cosmology; Hadronic Press; USA, 1997, 41-47.

Google Scholar

[13] Singh, T, Beesham, A and Mbokazi, WS. Gen. Relativ. Gravit. 1998; 30(4): 537-581.

Google Scholar

[14] Klein,O. Ark. Mat. Astron. Frys. 1948; 34A: 19, 1.

Google Scholar

[15] Singh, KP and Sattar, A. J. Pure Appl. Math. 1973; 4: 468.

Google Scholar

[16] Roy, SR and Singh, PN. J. Phys. A. Math. and Gen. 1977; 10(1): 49-54.

Google Scholar

[17] Roy, SR and Bali, R. J. Sci. Res. B.H.U. 1977; 28: 2.

Google Scholar

[18] da F Teixeira, AF, Wolk, I and Som, MM. Nuovo Cimento, Sezione B, 1977; 41 B: 387-396.

Google Scholar

[19] Coley, AA and Tupper, BOJ. Phys. Lett. A 1983. 95(7): 357-360.

Google Scholar

[20] Coley, AA and Tupper, BOJ. Astrophys. J. 1984; 280: 26.

Google Scholar

[21] Roy, SR and Banerjee, SK. Gen. Relativ. Gravit. 1996; 28(1): 27-33.

Google Scholar

[22] Bali, R and Meena, BL. Astrophys. Space Sci. 2002; 281: 565-575.

Google Scholar

[23] Bagora, A, Rathore, GS and Gandhi, S. Rom. J. Phys. 2009; 54, 7-8, 2009, 777-786.

Google Scholar

[24] Bagora, A. EJTP, 2010; 4(14): 373-382.

Google Scholar

[25] Ellis, GFR. General Relativity and Cosmology, R.K. Sachs, Ed., Academic Press, New York, 1971, p.117.

Google Scholar

[26] Landau, LD. Lifshitz, EM. Fluid Mechanics; Pergamon Press; 1963; 6: 505.

Google Scholar

[27] Johri, VB and Sudarshan, R. Proc. Int. Conf. on Mathematical Modelling in Science and Technology, World Scientific, Singapore, (1988).

Google Scholar

[28] Ellis, G.F.R. General Relativity and Cosmology, R.K. Sachs, Ed., Academic Press, New York, 1971, p.117.

Google Scholar