Modeling and Active Control of Circular Electrostatic Torsional Micromirror

Article Preview

Abstract:

Three main obstacles in modeling electrostatic torsional micromirror are hard to calculate – damping coefficient, mechanical spring constant and electrostatic torsion accurately. Because that parameter variations and model uncertainty of the torsional micromirror resulting from fabrication imperfections are inevitable, it is another problem to seek a control scheme for achieving accurate positioning and trajectory tracking of an electrostatic torsional micromirror. In this paper, aimed at a real prototype of circular electrostatic torsional micromirrorr, both static and dynamic behaviors are modeled and studied. A novel nonlinear Proportional, Integral and Derivative (PID) control are proposed in succession. Simulation results show that the system model derived is more accurate to the micromirror and the nonlinear PID can eliminate the static deviation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

649-654

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Chen, W. Weingartner, A. Azarov, and R.C. Giles, Tilt-angle stabilization of electrostatically actuated micromechanical mirrors beyond the pull-in point, IEEE J. Microelectromech. Syst., vol. 13, no. 6, pp.988-997, (2004).

DOI: 10.1109/jmems.2004.838391

Google Scholar

[2] O. Degani, E. Socher, A. Lipson, T. Leitner, D.J. Setter, S. Kaldor, and Y. Nemirovsky, Pull-in study of an electrostatic torsion microactuator, IEEE J. Microelectromech. Syst., vol. 7, no. 4, pp.373-379, (1998).

DOI: 10.1109/84.735344

Google Scholar

[3] R. Nadal-Guardia, A. Dehe, R. Aigner, and L. M. Castaner, Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point, J. Microelectromech. Syst., vol. 11, no. 3, p.255–263, (2002).

DOI: 10.1109/jmems.2002.1007404

Google Scholar

[4] Y. Zhao, F. E. H. Tay, F. S. Chau, and G. Zhou, Stabilization of dual-axis micromirrors beyond the pull-in point by integral sliding mode control, J. Micromech. Microeng., vol. 16, no. 7, p.1242–1250, May (2006).

DOI: 10.1088/0960-1317/16/7/018

Google Scholar

[5] N. Yazdi, H. Sane, T. D. Kudrle, and C. Mastrangelo, Robust sliding-mode control of electrostatic torsional micromirrors beyond the pull-in limit, in Proc. 12th Int. Conf. Solid State Sens., Actuators Microsyst., TRANSDUCERS, Boston, MA, 1450–1453, Jun. 18–21, 2003, pp.

DOI: 10.1109/sensor.2003.1217049

Google Scholar

[6] Y. Eun, B. Jeong, and J. Kim. Switching time reduction for electrostatic torsional micromirrors using input shaping, Japanese Journal of Applied Physics 49, (2010).

DOI: 10.1143/jjap.49.054102

Google Scholar

[7] E. S. Hung and S. D. Senturia, Extending the travel range of analog-tuned electrostatic actuators, J. Microelectromech. Syst., vol. 8, p.497–505, (1999).

DOI: 10.1109/84.809065

Google Scholar

[8] A. lireza Izadbakhsh, S.M.R. Rafiei. Robust control methodologies for optical micro electro mechanical system - new approaches and comparison, 13th International Power Electronics and Motion Control Conference(EPE-PEMC 2008).

DOI: 10.1109/epepemc.2008.4635577

Google Scholar

[9] H. Sanc, N. Yazdi, and C. Mastrangelo, Application of sliding mode control to electrostatically actuated two-axis gimbaled micromirrors, in Proc. Amer. Control Conf., Denver, CO, p.3726–3733, Jun. 4–6, (2003).

DOI: 10.1109/acc.2003.1240414

Google Scholar

[10] Y. Ma, S. Islam, and Y. -J. Pan, Electrostatic torsional micromirror with enhanced tilting angle using active control methods, IEEE/ASME Trans. Mechatronics, vol. PP, no. 99, pp.1-8, (2010).

DOI: 10.1109/tmech.2010.2066283

Google Scholar

[11] W. Shan, and X. Chen, A Novel Combined Proportional-Derivative Control for Electrostatic MEMS Mirror Actuation, IEICE TRANS. ELECTRON., vol. E94-C, No. 9 Sep, (2011).

DOI: 10.1587/transele.e94.c.1486

Google Scholar