[1]
Boyd L, Ghaoui El, Feron E, Balakrishnan V. Linear matrix inequalities in system and control theory. Philadelphia: SIAM; (1994).
DOI: 10.1137/1.9781611970777
Google Scholar
[2]
P. Gahinet, P. Apkarian, A linear matrix inequality approach to H-infinity control, International Journal of Robust and Nonlinear Control 4(4) (1994)421-448.
DOI: 10.1002/rnc.4590040403
Google Scholar
[3]
Gu,K. An integral inequality in the stability problem of time-delay systems. In Proceedings of 39th IEEE conference on decision and control (pp.2805-2810).
DOI: 10.1109/cdc.2000.914233
Google Scholar
[4]
M. Wu, Y. He, J.H. She, G.P. Liu, Delay-dependent cerieria for robust stability of time-varying delay systems, Automatica 40(2004)1435-1439.
DOI: 10.1016/j.automatica.2004.03.004
Google Scholar
[5]
J.X. Jing, D.L. Tan, Y.C. Wang. An LMI approach to stability of systems with severeal time-delay. IEEE Transactions Automatic Control 49(2004)1192-1195.
DOI: 10.1109/tac.2004.831109
Google Scholar
[6]
X. Jiang, Q.L. Han, On H-infinity control for linear systems with interval time-varying delays. Automatica 41(2005)2099-2106.
Google Scholar
[7]
Y. He, Q.G. Wang, L.H. Xie, L. Chong, Futher improvement of free-weighting matrices technique for systems with time-varying delay, IEEE Trans. Automat. Control52(2007)293–299.
DOI: 10.1109/tac.2006.887907
Google Scholar
[8]
M. Wu, Y. He, J.H. She, New delay-dependent stability criteria and stabilizing method for neutral systems, IEEE Trans. Automat. Control 49(2004) 2266–2271.
DOI: 10.1109/tac.2004.838484
Google Scholar
[9]
X.Y. Meng, J. Lam, B.Z. Du, H.J. Gao, A delay-partitioning approach to the stability analysis of discrete-time systems, Automatica 46(2010)610-614.
DOI: 10.1016/j.automatica.2009.12.004
Google Scholar
[10]
Hanyong Shao. New delay-dependent stability criteria for systems with interval delay. Automatica 45(2009)744-749.
DOI: 10.1016/j.automatica.2008.09.010
Google Scholar
[11]
Cheng Wang, Yi Shen, Improved delay-dependent robust stability criteria for uncertain time delay systems. Applied Mathematics and Computation 218(2011)2880-2888.
DOI: 10.1016/j.amc.2011.08.031
Google Scholar
[12]
Huaguang Zhang, Zhenwei Liu, Stability analysis for linear delayed systems via an optimally dividing delay interval approach. Automatica 47(2011)2126-2129.
DOI: 10.1016/j.automatica.2011.06.003
Google Scholar
[13]
J. Sun, G.P. Liu, J. Chen, D. Reers, Improved delay-dependent stability criteria for linear systems with time-varying delays. Automatica 46(2010)466-470.
DOI: 10.1016/j.automatica.2009.11.002
Google Scholar
[14]
Yun Liu, Li-sheng Hu, Peng Shi, A novel approach on stabilization for linear systems with time-varying input delay. Applied Mathematics and Computation 218(2012)5937-5947.
DOI: 10.1016/j.amc.2011.11.056
Google Scholar
[15]
Q. L. Han, Absolute stability of time-delay systems with sector bounded nonlinearity, Automatica 41(2005)2171–2176.
DOI: 10.1016/j.automatica.2005.08.005
Google Scholar