Preliminary Output Power Performances Analyses and Optimization of a Thermoelectric Module

Article Preview

Abstract:

The output electrical characteristics of a simple thermoelectric module consisting of two thermoelements are discussed theoretically. And the output power, area-specific power and weight-specific power are formulated as the function of the length and cross-section area of the thermoelements, load electrical resistance and the coolant heat-transfer coefficient. A preliminary analysis and geometric optimization are then undertaken to reveal the dependences of the power characteristics of the thermoelectric module.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 631-632)

Pages:

1201-1206

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Jang, S. Han, J. Y. Kim. Optimal design for micro-thermoelectric generators using finite element analysis. Microelectronic Engineering. 88 (2011) 775-778.

DOI: 10.1016/j.mee.2010.06.025

Google Scholar

[2] R. Venkatasubramanian, E. Siivola E, T. Colpitts, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. (413) 2001 597 ~602.

DOI: 10.1038/35098012

Google Scholar

[3] F. J. DiSalvo. Thermoelectric cooling and power generation. Science. (285) 1999 703~706.

DOI: 10.1126/science.285.5428.703

Google Scholar

[4] A. Bulusu, D. G. Walker. Review of electronic transport models for thermoelectric materials. Superlattices and Microstructures, 44 (2008): 1-36.

DOI: 10.1016/j.spmi.2008.02.008

Google Scholar

[5] L. D. Hicks, M. S. Dresselhaus. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, (47) 1993 12727~ 12731.

DOI: 10.1103/physrevb.47.12727

Google Scholar

[6] D. T. Crane, L. E. Bell. Design to maximize performance of a thermoelectric power generator with a dynamic thermal power source. Journal of Energy Resources Technology, (131) 2009 1-8.

DOI: 10.1115/1.3066392

Google Scholar

[7] D. M. Rowe. Handbook of thermoelectric. London: CRC press, (1996).

Google Scholar

[8] M. Gao, D. M. Rowe. Cooling performance of integrated thermoelectric microcooler. Solid-State Electronics. (43) 1999 923-929.

DOI: 10.1016/s0038-1101(99)00045-3

Google Scholar

[9] H. Y Jiang, H. W. Wang, W. Ren. The development and prospects of SiGe thermoelectric materials. Materials Review (in China). 21 (2007) 119-129.

Google Scholar