Fast Synthesis of High-Silica ZSM-5 Zeolite via a Simple Vapor-Phase Transport Method

Article Preview

Abstract:

Fast synthesis of high-silica ZSM-5 zeolite through vapor-phase transport (VPT) method was reported in this paper. The synthesized samples were characterized with XRD, FT-IR, XRF, SEM and N2 Absorption. Factors affecting the synthesis of ZSM-5 zeolite such as the alkalinity, the crystallization temperature and time, the quantity of seeds were investigated. With precipitated silica and fumed silica as silica source respectively, the appropriate ratio was studied as follows: (0.04-0.05) Na2O: 1.0SiO2: 15H2O: (0-0.0046)Al2O3: 0.01Seed, the reaction was carried out at 393-413K for 4-24h.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2184-2188

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Baerlocher, L. B. McCusker and D. H. Olson, In: Atlas of Zeolite Framework Types, Elsevier science, Amsterdam (2007), p.212.

DOI: 10.1016/b978-044453064-6/50287-5

Google Scholar

[2] a) G. T. Kokotailo, S. L. Lawton, D. H. Olson and W. M. Meier: Nature Vol. 272 (1978), pp.437-438. b) D. H. Olson, G. T. Kokotailo, S. L. Lawton and W. M. Meier: J. Phys. Chem. Vol. 85 (1981), pp.2238-2243.

DOI: 10.1038/272437a0

Google Scholar

[3] a) A. Corma and H. Garcia: Chem. Rev. Vol. 103 (2003), pp.4307-4365. b) Y. S. Tao and K. Katsumi: Chem. Rev. Vol. 106 (2006), pp.896-910.

Google Scholar

[4] B. Liu and S. Berend: J. Phys. Chem. B Vol. 110 (2006), pp.20166-20171.

Google Scholar

[5] Y. L. Jiao, C. H. Jiang, Z. M. Yang and J. S Zhang: Micro. Meso. Mater. Vol. 162 (2012), pp.152-158.

Google Scholar

[6] E. Kresten and H. Christina: Chem. Mater. Vol. 20 (2008), pp.946-960.

Google Scholar

[7] W. Y. Xu, J. X. Dong, J. P. Li, J. Q. Li and F. Wu: J. Chem. Soc., Chem. Commun. Vol. 1990 (1990), pp.755-756.

Google Scholar

[8] a)M. H. Kim, H. X. Li and M. E. Davis: Micro. Mater. Vol. 1 (1993), pp.191-200. b) M. Kim, M. Jung and H. Rhee: Korean J. Chem. Eng. Vol. 12 (1995), pp.410-415.

Google Scholar

[9] X. W. Cheng, J. Wang, H. Yu, J. Guo, H.Y. He and Y. C. Long: Micro. Meso. Mater. Vol. 118 (2009), pp.152-162.

Google Scholar

[10] P. Wu, M. Takayuki, Y. M. Liu, M. Y. He and T. Tatsumi: Catal. Today Vol. 99 (2005), pp.233-240.

Google Scholar

[11] P. R. Hari, K. Ueyamaa and M. Matsukatab: Appl. Catal. A. Gen. Vol. 166 (1998), pp.97-103.

Google Scholar

[12] C. Watcharop, E. D. Mark and O. Tatsuya: Chem. Mater. Vol. 19 (2007), pp.4120-4122.

Google Scholar

[13] B. Griselda, D. Isabel and T. Michael: Chem. Mater. Vol. 16 (2004), pp.5697-5705.

Google Scholar

[14] A. Z. Jia, G.X. Liu, W. W. Fang, X.Q. Liang and S. X. Liu: Acta Petrolei Sinica Vol. 25 (2009), pp.53-57 in Chinese.

Google Scholar

[15] Y. S. Tao, Y. Hattori and A. Matumoto: J. Phys. Chem. B Vol. 109 (2005), pp.194-199.

Google Scholar

[16] G. Majano, A. Darwiche, S. Mintova and V. Valtchev: Ind. Eng. Chem. Res. Vol. 48 (2009), pp.7084-7091.

DOI: 10.1021/ie8017252

Google Scholar