Enhanced Microwave Absorption by Incorporating Fe3O4 Nanoparticles into Ordered Mesoporous Carbon

Article Preview

Abstract:

Novel Fe3O4/ordered mesoporous carbon (OMC) composite powders have been prepared by impregnation and reduction methods for the microwave absorbing application purpose. The Fe3O4 nanoparticles were encapsulated in the mesopores of OMCs, and Fe3O4 contents in the composite could be easily controlled by changing the concentration of ferric nitrate solution during the preparation. The Fe3O4/OMC composites show very excellent microwave absorbing properties with respect to pure OMC samples, in a frequency ranging of 8.2-12.4 GHz. A minimum reflection loss (RL) value of -32 dB at 11.35 GHz and a broader absorption band with the RL values under -10 dB are obtained when the thickness of samples is 1.6 mm. The enhanced microwave absorption of the Fe3O4/OMC nanocomposites is contributed to the better impedance match between dielectric loss and magnetic loss, which originates from the incorporation of magnetic species into OMC.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2193-2197

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Qin and C. Brosseau: J. Appl. Phys. Vol. 111 (2012), p.061301

Google Scholar

[2] G. Li, T.S. Xie, S.L. Yang, J.H. Jin and J.M. Jiang: J. Phys. Chem. C Vol. 116 (2012), p.9196

Google Scholar

[3] M. Mahmoodi, M. Arjmand, U. Sundararaj and S. Park: Carbon Vol. 50 (2012), p.1455

Google Scholar

[4] B.Q. Yuan, L.M. Yu, L.M. Sheng, K. An and X.L. Zhao XL: J. Phys. D: Appl. Phys. Vol. 45 (2012), p.235108

Google Scholar

[5] V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera and N. Kumar: Carbon Vol. 50 (2012), p.2202

Google Scholar

[6] H. Zhou, J.D. Zhuang, Q. Yan, Q. Liu: Mater. Lett. Vol. 85 (2012), p.117

Google Scholar

[7] J.C. Wang, C.S. Xiang, Q. Liu, Y.B. Pan and J.K. Guo: Adv. Funct. Mater. Vol. 18 (2008), p.2995.

Google Scholar

[8] J.H. Zhou, J.P. He, T. Wang, G.X. Li, Y.X. Guo, J.Q. Zhao and Y.O. Ma: J. Phys. Chem. C Vol. 114 (2010), p.7611

Google Scholar

[9] X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei and C.G. Lee: Appl. Phys. Lett. Vol. 89 (2006), p.053115

Google Scholar

[10] Q.L. Liu, D. Zhang and T.X. Fan: Appl. Phys. Lett. Vol. 93 (2008), p.013110

Google Scholar

[11] S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki: J. Am. Chem. Soc. Vol. 122 (2000), p.10712

DOI: 10.1021/ja002261e

Google Scholar

[12] Z.X. Wu, W. Li, P.A. Webley, D.Y. Zhao: Adv. Mater. Vol. 24 (2012), p.485

Google Scholar

[13] R.L. Liu, Y.J. Ren, Y.F. Shi, F. Zhang, L.J. Zhang, B. Tu and D.Y. Zhao: Chem. Mater. Vol. 20 (2008), p.1140

Google Scholar

[14] E. Michielssen, J. Sajer, S. Ranjithan and R. Mittra: IEEE Trans. Microwave Theory Tech. Vol. 41 (1993), p.1024.

DOI: 10.1109/22.238519

Google Scholar

[15] Z.F. Liu, G. Bai, Y. Huang, F.F. Li, Y.F. Ma, T.Y. Guo, X.B. He, X. Lin, H.J. Gao and Y.S. Chen: J. Phys. Chem. C Vol. 111 (2007), p.13696.

Google Scholar

[16] J.W. Liu, R.C. Che, H.J. Chen, F. Zhang, F. Xia, Q.S. Wu and M. Wang: Small Vol. 8 (2012), p.1214

Google Scholar

[17] Q.L. Liu, D. Zhang, T.X. Fan, J.J. Gu, Y. Miyamoto and Z.X. Chen: Carbon Vol. 46 (2008), p.461

Google Scholar

[18] X.G. Liu, D.Y. Geng and Z.D. Zhang: Appl. Phys. Lett. Vol. 92 (2008), p.243110

Google Scholar

[19] Q.M. Su, G. Zhong, J. Li, G.H. Du, B.S. Xu: Appl. Phys. a-Mater. Vol. 106 (2012), p.59

Google Scholar