Effects of Surfactant Concentration on the Microstructures of TiO2 Hollow Spheres by Hydrothermal Method

Article Preview

Abstract:

TiO2 hollow spheres were prepared by hydrothermal method using CTAB, glucose and (NH4)2TiF6 as surfactant, template and titanium source, respectively. The microstructures of hollow spheres TiO2 were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The results showed the concentration of the CTAB obviously influenced the morphology of hollow spheres TiO2. This synthesis route may also extend to the preparation of hollow structures of other metal oxides. Because of the large specific surface area, porous structure, and good penetration, the hierarchical TiO2-derived hollow spheres may find great applications in catalysis, photovoltaic cells and high surface area electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2189-2192

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.R. Zhang, C.M. Shen, S.T. Chen, Z.C. Xu, F.S. Liu, J.Q. Li, H.J. Gao: Nanotechnology. Vol. 16 (2005),P. 267.

Google Scholar

[2] S.H. Sun, H. Zeng:J. Am. Chem. Soc. Vol. 124 (2002) ,P. 8204.

Google Scholar

[3] D.L. Liao, B.Q. Liao:J. Photoch. Photobiolo. A: Chem. Vol. 187 (2007) 363-369.

Google Scholar

[4] X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos: Nature. Vol. 404 (2000),P. 59.

DOI: 10.1038/35003535

Google Scholar

[5] W.G. Lu, P.X. Gao, W.B. Jian, Z.L. Wang, J.Y. Fang:J. Am. Chem. Soc. Vol. 126 (2004), P. 14816.

Google Scholar

[6] J.C. Yu, X. Wang, X. Fu: Chem. Mater. Vol. 16 (2004),P. 1523.

Google Scholar

[7] P.D. Cozzoli, A. Kornowski, H. Welleri:J. Am. Chem. Soc. Vol. 125 (2003),P. 14539.

Google Scholar

[8] D.A. Wang, B. Yu, F. Zhou, C.W. Wang, W.M. Liu: Mater. Chem. Phys. Vol. 113 (2009),P. 602.

Google Scholar

[9] V.G. Po, Y. Langzam, A. Zaban: Langmuir . Vol. 23 (2007), P. 11211.

Google Scholar

[10] H.Q. Lu, L.X. Zhang, W.H. Xing, H.T. Wang, N.P. Xu: Mater. Chem. Phys. Vol. 94 (2005),P. 322.

Google Scholar

[11] Y. Yamada, M. Mizutani, T. Nakamura, K. Yano: Chem. Mater. Vol. 22 (2010),P. 1695.

Google Scholar

[12] G.Y. Zhang, Y.Q. Sun, D.Z. Gao, Y.Y. Xu: Mater. Res. Bull. Vol. 45 (2010),P. 755.

Google Scholar

[13] Z.F. Zheng, H.W. Liu, J.P. Ye, J.C. Zhao:J. Mol. Catal. A: Chem. Vol. 316 (2010),P. 75.

Google Scholar

[14] J.G. Yu, G.H. Wang, B. Cheng, M.H. Zhou: Appl. Catal. B. Vol. 69 (2007),P. 171.

Google Scholar

[15] X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li: Mater. Chem. Phys. Vol. 78 (2002),P. 99.

Google Scholar

[16] X.M. Sun, Y.D. Li: Angew. Chem. Int. Ed. Vol. 43 (2004),P. 597.

Google Scholar

[17] W.H. Shen, Y.F. Zhu, X.P. Dong, J.L. Gu, J.L. Shi: Chem. Letter. Vol. 34 (2005),P. 840.

Google Scholar

[18] H.Q. Wang, Z.B. Wu, Y. Liu:J. Phys. Chem. C . Vol. 113 (2009),P. 13317.

Google Scholar