Facile Solvothermal Method to Synthesis Eu Doped TiO2 Hollow Microspheres with Enhanced Photoluminescence

Article Preview

Abstract:

Eu doped TiO2 powders have been prepared by the solvothermal process followed by calcination treatment. The furfural and dodecylamine assisted solvothermal method is a very simple way of fabricating porous TiO2 hollow spheres due to in situ hydrolysis and a self-assembled effect. By adding europium nitrate into the precursoSubscript textr solution, Eu-doped TiO2 hollow spheres with an intense photoluminescence were easily obtained. The stronger photoluminescence of Eu-doped TiO2 hollow sample can be attributed to the unique microstructures, such as uniform size distribution and the broken hollow structure, compared to solid Eu-TiO2 sample.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2198-2202

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Tao, G. Zhao, W. Zhang, S. Xia, Mater. Res. Bull. 32 (1997), 501-506.

Google Scholar

[2] V. R. Band, Y. T. Nien, T. H. Lu, I. G. Chen, J. Am. Ceram. Soc. 92 (2009), 2953-2956.

Google Scholar

[3] Y. Iwako, Y. Akimoto, M. Omiya, T. Ueda, T. Yokomori, J. Lumin. 130 (2010), 1470-1474.

Google Scholar

[4] B. O'Regan, M. Gratzel, Nature 353 (1991), 737-740.

Google Scholar

[5] J. Zhuang, W. Dai, Q. Tian, Z. Li, L. Xie, J. Wang, P. Liu, X. Shi, D. Wang, Langmuir 26 (2010), 9686-9694.

Google Scholar

[6] K. Zhang, J. Li, W. Wang, J. Xiao, W. Yin, L. Yu, Opt. Lett. 36 (2011), 3443-3445.

Google Scholar

[7] M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, G. Sberveglieri, Nanostruct. Mater. 7 (1996), 709-718.

DOI: 10.1016/s0965-9773(96)00050-5

Google Scholar

[8] H. Wang, Y. Wang, Y. Yang, X. Li, C. Wang, Mater. Res. Bull. 44 (2009), 408-414.

Google Scholar

[9] S. C. Yang, D. J. Yang, J. Kim, J. M. Hong, H. G. Kim, I. D. Kim, H. Lee, Adv. Mater. 20 (2008), 1059-1064.

Google Scholar

[10] J. Wang, Y. Bai, M. Wu, J. Yin, W. Zhang, J. Power Sources 191 (2009), 614-618.

Google Scholar

[11] H. X. Li, Z. F. Bian, J. Zhu, D. Q. Die, G. S. Li, Y. N. Huo, H. Li, Y. F. Lu, J. Am. Chem. Soc. 129 (2007), 8406-8407.

Google Scholar

[12] S.H. A. Lee, N. M. Abrams, P. G. Hoertz, G. D. Barber,L. I. Halaoui, T. E. Mallouk, J. Phys. Chem. B 112 (2008), 14415-14421.

DOI: 10.1021/jp802692u

Google Scholar

[13] U. Jeong, S. H. Im, P. H. C. Camargo, J. H. Kim, Y. Xia, Langmuir 23 (2007), 10968-10975.

Google Scholar

[14] F. Caruso, R. A. Caruso, H. Mohwald, Science 282 (1998), 1111-1114.

Google Scholar

[15] Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, P. Alivisatos, Science, 304 (2004), 711-714.

DOI: 10.1126/science.1096566

Google Scholar

[16] X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. 20 (2008) 3987-4019.

Google Scholar

[17] H. G. Yang, H. C. Zeng, J. Phys. Chem. B 108 (2004), 3492-3495.

Google Scholar

[18] F. Caruso, Chem. Eur. J. 6 (2000), 413-419.

Google Scholar

[19] X. Sun, Y. Li, Angew. Chem. Int. Ed. 43 (2004), 3827-3831.

Google Scholar

[20] J. Zhuang, Q. Tian, b H. Zhou, Q. Liu, P. Liu, H. Zhong, J. Mater. Chem. 22 (2012), 7036-7042.

Google Scholar

[21] B. R. Judd, Phys. Rev. 127 (1962), 750-761.

Google Scholar

[22] G. S. Ofelt, J. Chem. Phys. 37 (1962), 511-520.

Google Scholar

[23] H. You, M. Nogami, J. Phys. Chem. B 108 (2004), 12003-12008.

Google Scholar

[24] X. Liu, C. Li, Z. Cheng, J. Lin, J. Phys. Chem. C 111 (2007), 16601-16607.

Google Scholar