Strong Perpendicular Magnetic Anisotropy with High Thermal Stability in Annealed Co/Native Oxide/Pd Multilayers

Article Preview

Abstract:

A novel perpendicular magnetic material was obtained in the annealed Co/native oxide/Pd multilayer films. Upon thermal annealing in a vacuum, a sharp transition of magnetic anisotropy from in-plane to out-of-plane is observed for the Co/native oxide/Pd multilayers with 20 Å Co layers. These annealed Co/native oxide/Pd multilayers possess extremely large effect perpendicular anisotropy field (Heff) and perpendicular anisotropy energy (Ku), with the maximum Heff of 17 kOe and Ku of 5.1×106 erg/cm3 obtained in the annealed Co(20 Å)/native oxide/Pd(10 Å) multilayers. Moreover, the large perpendicular magnetic anisotropy sustains with annealing temperature varying from 200°C to 400°C, indicative of high thermal stability. The present results open the way to a third alternative for the realization of thermally stable perpendicular magnetic electrodes of tunnel junctions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

2506-2511

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. B. Zeper, H. W. van Kesteren, B. A. J. Jacobs, J. H. M. Spruit and P. F. Carcia: J. Appl. Phys. Vol. 70 (1991), p.2264.

Google Scholar

[2] N. Thiyagarajah, S. Bae, H. W. Joo, Y. C. Han and J. Kim: Appl. Phys. Lett. Vol. 92 (2008), p.062504.

Google Scholar

[3] J. H. Park, C. Park, T. Jeong, M. T. Moneck, N. T. Nufer and J. G. Zhu: J. Appl. Phys. Vol. 103 (2008), p. 07A917.

Google Scholar

[4] B. Carvello, C. Ducruet, B. Rodmacq, S. Auffret, E. Gautier, G. Gaudin and B. Dieny: Appl. Phys. Lett. Vol. 92 (2008), p.102508.

DOI: 10.1063/1.2894198

Google Scholar

[5] B. Rodmacq, A. Manchon, C. Ducruet, S. Auffret and B. Dieny: Phys. Rev. B Vol. 79 (2009), p.024423.

Google Scholar

[6] L. E. Nistor, B. Rodmacq, S. Auffret and B. Dieny: Appl. Phys. Lett. Vol. 94 (2009), p.012512.

DOI: 10.1063/1.3064162

Google Scholar

[7] S. Monso, B. Rodmacq, S. Auffret, G. Casali, F. Fettar, B. Gilles, B. Dieny and P. Boyer: Appl. Phys. Lett. Vol. 80 (2002), p.4157.

DOI: 10.1063/1.1483122

Google Scholar

[8] Y. Dahmane, S. Auffret, U. Ebels, B. Rodmacq and B. Dieny: IEEE Trans. Magn. Vol. 44 (2008), p.2865.

DOI: 10.1109/tmag.2008.2001992

Google Scholar

[9] A. Manchon, S. Pizzini, J. Bogel, V. Uhlíř, L. Llombard, C. Ducruet, S. Auffret, B. Rodmacq, B. Dieny, M. Hochstrasser and G. Panaccione: J. Magn. Magn. Mater. Vol. 320 (2008), p.1889.

DOI: 10.1016/j.jmmm.2008.02.131

Google Scholar

[10] B. Rodmacq, S. Auffret, B. Dieny, S. Monso and P. Boyer: J. Appl. Phys. Vol. 93 (2003), p.7513.

Google Scholar

[11] A. Manchon, C. Ducruet, L. Lombard, S. Auffret, B. Rodmacq, B. Dieny, S. Pizzini, J. Vogel, V. Uhlíř, M. Hochstrasser and G. Panaccione: J. Appl. Phys. Vol. 104 (2008), p.043914.

DOI: 10.1063/1.2969711

Google Scholar

[12] J. H. Jung et al.: Appl. Phys. Lett. Vol. 96 (2010), p.042503.

Google Scholar

[13] Q. L. Lv, J. W. Cai, H. Y. Pan and B. S. Han: Appl. Phys. Express Vol. 3 (2010), p.093003.

Google Scholar

[14] K. Yakushiji, T. Saruya, H. Kubota, A. Fukushima, T. Nagahama, S. Yuasa and K. Ando: Appl. Phys. Lett. Vol. 97 (2010), p.232508.

DOI: 10.1063/1.3524230

Google Scholar

[15] O. Hellwiga, A. Bergera, J. B. Kortrightb and E. E. Fullerton: J. Magn. Magn. Mater. Vol. 319 (2007), p.13.

Google Scholar

[16] D. Weller, Y. Wu, J. Stohr and M. G. Samant: Phys. Rev. B Vol. 49 (1994), p.12888.

Google Scholar