Coaled Carbon-Based Solid Acid: a New and Efficient Catalyst for Click Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones under Solvent-Free Conditions

Article Preview

Abstract:

Coaled carbon-based solid acid (CCBSAC) is reported as a new, efficient and recyclable catalyst for the regioselective multicomponent synthesis of dihydropyrimidin-2(1H)-ones from aldehydes, β-ketoesters and urea or thiourea under solvent-free conditions. The structure and thermal stability of CCBSAC which resulted from ultra-clean coal resources mainly were characterized by IR, XRD, and TG. Nineteen dihydropyrimidin-2(1H)-ones examples were prepared and this catalyst could recycle up to 4 consecutive runs without losing its efficiency. The high yields of products, short reaction times, ease of work-up and clean procedure will make the present method a useful and important addition to the previous methodologies for the synthesis of dihydropyrimidin-2(1H)-ones.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

504-507

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Oliver Kappe: Eur. J. Med. Chem. Vol. 35 (2000), p.1043.

Google Scholar

[2] G. C. Rovnyak, S. D. Kimball, B Beyer, et al: J. Med. Chem. Vol. 38 (1995), p.119.

Google Scholar

[3] G. H. Mahdavinia, H. Sepehrian: Chin. Chem. Lett. Vol. 19 (2008), p.1435.

Google Scholar

[4] Z. J. Quan, Y. X. Da, Z. Zhang, et al: Catal. Commun. Vol. 10 (2009), p.1146.

Google Scholar

[5] M. Zhang, Y. Li: Synth. Commun. Vol. 37 (2006), p.835.

Google Scholar

[6] X. Chen, Y. Q. Peng: Catal. Lett. Vol. 122 (2008), p.310.

Google Scholar

[7] W. Y. Chen, J. Lu: J. Org. Chem. Vol. 24 (2004), p.1111.

Google Scholar

[8] F. Bigi, S Carloni, B Frullanti, et al: Tetrahedron Lett. Vol. 40 (1999), p.3465.

Google Scholar

[9] S. L. Jain, V. V. D. N. Prasad, B Sain: Catal. Commun. Vol. 9 (2008), p.499.

Google Scholar

[10] M. Tajbakhsh, B. Mohajerani, M. Heravi, et al: J. Mol. Catal. A:Chem. Vol. 236 (2005), P. 216.

Google Scholar

[11] Y. Q. Zhang, C. Wang, G. S. Li, et al: J. Org. Chem. Vol. 25 (2005), p.1265.

Google Scholar

[12] J. K. Joseph, S. L. Jain, B. Sain: J. Mol. Catal. A:Chem. Vol. 247 (2006), p.99.

Google Scholar

[13] N. Y. Fu, Y. F. Yuan, Z. Cao, et al: Tetrahedron. Vol. 58 (2002), p.4801.

Google Scholar

[14] F. L. Zumpe, M. Flüβ, K. Schmitz, et al: Tetrahedron Lett. Vol. 48 (2007), p.1421.

Google Scholar

[15] S. Tu, F. Fang, C. Miao, et al: Tetrahedron Lett. Vol. 44 (2003), p.6153.

Google Scholar

[16] C. J. Liu, J. D. Wang, Y. P. Li: J. Mol. Catal. A:Chem. Vol. 258 (2006), p.367.

Google Scholar

[17] A. Shaabani, A. Bazgir: Tetrahedron Lett. Vol. 44 (2003), p.857.

Google Scholar

[18] J. Lu, F. L Wang, Y. J. Bai, et al: J. Org. Chem. Vol. 22 (2002), p.788.

Google Scholar

[19] H. Khabazzadeh, K. Saidi, H. Sheibani: Med. Chem. Lett. Vol. 18 (2008), p.278.

Google Scholar

[20] S. Chitra, K. Pandiarajan: Tetrahedron Lett. Vol. 50 (2009), p.2222.

Google Scholar

[21] P. Salehi, M. Dabiri, M. A. Zolfigol, et al: Tetrahedron Lett. Vol. 44 (2003), p.2889.

Google Scholar