An Experimental Study of Steam Gasification of Biomass over Precalcined Copper Slag Catalysts

Article Preview

Abstract:

Biomass gasification was separated from catalytic pyrolysis in a two-stage fixed bed reactor with precalcined copper slag catalysts placed in a secondary reactor. The effects of gasification temperature (720-950°C), steam to biomass (S/B) mass ratio (0-2g/g), precalcined copper slag to biomass (C/B) mass ratio (0-2g/g) and copper slag precalcined at different temperatures (800-1000°C) on characteristics of biomass gasification were investigated. The experimental results show that the increase of gasification temperature, S/B mass ratio, C/B mass ratio and precalcination temperature are all favorable for raising gasification efficiency and enhancing the H2 production. With copper slag precalcined at 1000°C for 5 hours as catalyst under the experimental conditions examined, the H2 content, the hydrogen yield, the gas yield and the gasification efficiency reach the maximum of 59.16%, 0.72 Nm3/kg, 1.22 Nm3/kg and 77.56%,respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

479-489

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X.Q. Cui, J. Chang, T.J. Wang, Q. Zhang, Y. Fu and X.H. Zhang: Acta Energiae Solaris Sinica, Vol. 27(7) (2006), pp.666-670 (In Chinese)

Google Scholar

[2] J.H. Yu, H.Y. Yuan, S.P. Xu, X.Q. Yang and S. Liu: Journal of Xi'An Jiao Tong University, Vol. 42(8) (2008), pp.1049-1053 (In Chinese)

Google Scholar

[3] H. Huang, G.X. Hu: Journal of Shang Hai Jiao Tong University, Vol. 41(12) (2007), pp.1930-1933 (In Chinese)

Google Scholar

[4] S. Rapagna, N. Jand, A. Kiennemann and P.U. Foscolo: Biomass and Bioenergy, Vol. 19(3) (2000), pp.187-197

Google Scholar

[5] Z. Abu El-Rub, E.A. Bramer and G. Brem: Ind.Eng.Chem.Res., Vol. 43(22) (2004),pp.6911-6919

DOI: 10.1021/ie0498403

Google Scholar

[6] B.S. Huang, H.Y. Chen, J.H. Kuo, C.H. Chang and M.Y. Wey: Bioresource Technology, Vol. 110(2012), pp.670-675

Google Scholar

[7] S. Rapagna, N. Jand and P.U. Foscolo: International Journal of Hydrogen Energy, Vol. 23(7) (1998), pp.551-557

Google Scholar

[8] G. Hu, S.P. Xu, S.G. Li, C.R. Xiao and S.Q Liu: Fuel Processing Technology, Vol. 87(5) (2006), pp.375-382

Google Scholar

[9] L. Devi, K.J. Ptasinski and F.J.J.G. Janssen: Fuel Processing Technology, Vol. 86(6) (2005), pp.707-730

Google Scholar

[10] B. Gorai, R.K. Jana and Premchand: Resources, Conservation and Recycling, Vol. 39(4) (2003), pp.299-313

DOI: 10.1016/s0921-3449(02)00171-4

Google Scholar

[11] B. Kiyak, A. Ozer, H.S. Altundogan,M. Erdem and F. Tumen: Waste Management, Vol. 19(5) (1999), pp.333-338

Google Scholar

[12] L.M. Zhao, J.H. Hu, H. Wang, H.L. Liu, S. Qing and L. L: the Chinese Journal of Process Engineering, Vol. 10(4) (2010), pp.726-731 (In Chinese)

Google Scholar

[13] C. Wang, J.H. Hu, H. Wang and H.L. Liu: the Chinese Journal of Process Engineering, Vol. 11(5) (2011), pp.806-811 (In Chinese)

Google Scholar

[14] Y.G. Pan, E. Velo, X. Roca, J.J. Manya and L. Puigjaner: Fuel, Vol. 79(11) (2000), pp.1317-1326

Google Scholar

[15] P.M. LV, J. Chang, Z.H. Xiong, C.Z. Wu and Y. Chen: Journal of Fuel Chemistry and Technology, Vol. 32(4) (2003), pp.305-310 (In Chinese)

Google Scholar

[16] P.M. Lv, Z.H. Xiong, T.J. Wang, J. Chang, C.Z. Wu and Y. Chen: Acta Energiae Solaris Sinica, Vol. 24(6) (2003), pp.758-764 (In Chinese)

Google Scholar

[17] J.M. Encinar, J.F. Gonzalez and J. Gonzalez: Fuel Processing Technology, Vol. 75(1) (2002), pp.27-43

Google Scholar

[18] C. Franco, F. Pinto, I. Gulyurtlu and I. Cabrita: Fuel, Vol. 82(7) (2003), pp.835-842

Google Scholar

[19] M.A. Uddin, H. Tsuda, S.J. Wu and E. Sasaoka: Fuel, Vol. 87(4-5) (2008), pp.451-459

Google Scholar