Effect of Silane Coupling Agent on the Self-Cleaning Property of TiO2-Coated Cotton Fabrics

Article Preview

Abstract:

Self-cleaning fabrics have been successfully prepared by depositing and grafting TiO2 nanoparticles, and silane coupling agent 3-Aminopropyltriethoxysilane was adopted to improve the photocatalytic activity of self-cleaning fabrics. TEM results showed that the treatment of silane coupling agent is good for increasing the amount of TiO2 particles. The excellent photocatalytic activity of TiO2-coated cotton fabrics is attributed the increase of TiO2 particles and the formation of the TiO2/SiO2 structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

960-964

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.P. Melian, O.G. Diaz, J.M.D. Rodriguez, G. Colon, J.A. Navio, J.P. Pena, Appl. Catal., A l 411 (2012) 153-159.

Google Scholar

[2] J. Dostanic, B. Grbic, N. Radic, P. Stefanov, Z. Saponjic, J. Buha, D. Mijin, Chem. Eng. J. 180 (2012) 57-65.

Google Scholar

[3] S. Chu, L. Luo, J. Yang, F. Kong, S. Luo, Y. Wang, Z. Zou, Appl. Surf. Sci. 258 (2012) 9664-9667.

Google Scholar

[4] A. Katoch, H. Kim, T. Hwang, S. Kim, J. Sol-Gel Sci. Technol. 61 (2012) 77-82.

Google Scholar

[5] R. Rahal, T. Pigot, D. Foix, S. Lacombe, Appl. Catal., B 104 (2011) 361-372.

Google Scholar

[6] D. Wu, M. Long, Surf. Coat. Technol. 206 (2012) 3196-3200.

Google Scholar

[7] J. Kiwi, C. Pulgarin, Catal. Today 151 (2010) 2-7.

Google Scholar

[8] A. Bozzi, T. Yuranova, J. Kiwi, J. Photochem Photobiol A: Chem. 172 (2005) 27-34.

Google Scholar

[9] K.H. Qi, W.A. Daoud, J.H. Xin, C.L. Mak, W.Z. Tang, W.P. Cheung, J. Mater. Chem. 16 (2006) 4567-4574.

Google Scholar

[10] K.H. Qi, J.H. Xin, W.A. Daoud, C.L. Mak, Int. J. App. Ceram. Tec. 4 (2007) 554-563.

Google Scholar

[11] W.A. Daoud, J.H. Xin, Y.H. Zhang, Surf. Sci. 599 (2005) 69-75.

Google Scholar

[12] M.J. Uddin, F. Cesano, F. Bonino, S. Bordiga, G. Spoto, D. Scarano, A. Zecchina, J. Photochem Photobiol A: Chem. 189 (2007) 286-294.

DOI: 10.1016/j.jphotochem.2007.02.015

Google Scholar

[13] K.T. Meilert, D. Laub, J. Kiwi, J. Mol. Catal. A-Chem. 237 (2005) 101-108.

Google Scholar

[14] A. Bozzi, T. Yuranova, I. Guasaquillo, D. Laub, J. Kiwi, J. Photochem Photobiol A: Chem. 174 (2005) 156-164.

Google Scholar

[15] A.C. Miller, J.C. Berg, . Part A-Appl. S. 34 (2003) 327-332.

Google Scholar

[16] S.J. Park, J.S. Jin, J. Colloid Interface Sci. 242 (2001) 174-179.

Google Scholar

[17] Z.A.M. Ishak, A. Ariffin, R. Senawi, Eur. Polym. J. 37 (2001) 1635-1647.

Google Scholar

[18] W.A. Daoud, S.K. Leung, W.S. Tung, J.H. Xin, K. Cheuk, K. Qi, Chem. Mater. 20 (2008) 1242-1244.

DOI: 10.1021/cm702661k

Google Scholar

[19] K. Nakata, A. Fujishima, J. Photochem. Photobiol., C (2012).

Google Scholar

[20] A. Fujishima, X.T. Zhang, D.A. Tryk, Surf. Sci. Rep. 63 (2008) 515-582.

Google Scholar

[21] K.H. Qi, X.Q. Chen, Y.Y. Liu, J.H. Xin, C.L. Mak, W.A. Daoud, J. Mater. Chem. 17 (2007) 3504-3508.

Google Scholar