Effect of Sodium Ion on Flame Retardance and Thermal Degradation of Cellulose Fiber

Article Preview

Abstract:

Flame retardance and thermal degradation of CMC-Na fibers were investigated using limiting oxygen index (LOI), thermal gravimetry (TG), differential TG (DTG) and Scanning electron microscopy (SEM). The LOI values of different CMC-Na fibers are 23, 26, 28.5, 31 and 34, compared with about 20 for viscose fiber. TG and DTG studies indicate that the temperature of maximum degradation rate and the maximum degradation rate for CMC-Na fibers are much lower than those of viscose fiber. However, CMC-Na fibers generate much more residues or carbonaceous char than does viscose fiber. The increase of sodium ion content, the carbon residual also increases. SEM studies of combustion residues after LOI testing indicate that all CMC-Na fibers produce intumescent, hard and brittle residue crusts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 634-638)

Pages:

955-959

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Liu, P.A. Song, Z.P. Fang, L. Shen, M. Peng, Thermal degradation and flammability properties of HDPE/EVA/C60 nanocomposites, Thermochim. acta. 506 (2010) 98-101.

DOI: 10.1016/j.tca.2010.04.029

Google Scholar

[2] S. Soares, G. Camino, S. Levchik, Effect of metal carboxylates on the thermal decomposition of cellulose, Polym. Degrad. Stab. 62 (1998) 25-31.

DOI: 10.1016/s0141-3910(97)00256-5

Google Scholar

[3] S.J. Garvey, S.C. Anand, T. Rowe, A.R. Horrocks, D.G. Walker, The flammability of hybrid viscose blends, Polym. Degrad. Stab. 54 (1996) 413-416.

DOI: 10.1016/s0141-3910(96)00072-9

Google Scholar

[4] S. Heidari, R. Kallonen, Hybrid fibres in fire protection, Fire Mater. 17 (1993) 21-24.

DOI: 10.1002/fam.810170104

Google Scholar

[5] X. Qiao, Test methods of flame retardant textiles, Nonwovens. 18 (2010) 23-26.

Google Scholar

[6] H.K. Zhang, The review of flame retardancy on textiles, Textile Auxiliaries. 26 (2009) 7-11, 15.

Google Scholar

[7] A.R. Horrocks, B.K. Kandola, P.J. Davies, S. Zhang, Developments in flame retardant textiles-a review, Polym. Degrad. Stab. 88 (2005) 3-12.

DOI: 10.1016/j.polymdegradstab.2003.10.024

Google Scholar

[8] J. J. Zhang, Q. Ji, F. J. Wang, L.W. Tan, Y.Z. Xia, Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres, Polym. Degrad. Stab. 97 (2012) 1034-1040.

DOI: 10.1016/j.polymdegradstab.2012.03.004

Google Scholar