[1]
R.D. Gregory, F.Y.M. Wan, Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory, Journal of Elasticity, 14 (1984) 27-64.
DOI: 10.1007/bf00041081
Google Scholar
[2]
R.D. Gregory, F.Y.M. Wan, On plate theories and Saint-Venant's principle, International Journal of Solids and Structures, 21 (1985) 1005-1024.
DOI: 10.1016/0020-7683(85)90052-6
Google Scholar
[3]
R.D. Gregory, F.Y.M. Wan, The interior solution for linear problems of elastic plates, Journal of Applied Mechanics, 55 (1988) 551-559.
DOI: 10.1115/1.3125829
Google Scholar
[4]
S.P. Xu, Y. Gao, W. Wang, On the boundary conditions for transversely isotropic piezoelectric plates, Mechanics Research Communications, 34 (2007) 480-487.
DOI: 10.1016/j.mechrescom.2007.05.002
Google Scholar
[5]
Y. Gao, S.P. Xu, B.S. Zhao, Boundary conditions for the bending of a piezoelectric beam, Science in China Series G: Physics, Mechanics and Astronomy, 51 (2008) 847-856.
DOI: 10.1007/s11433-008-0095-5
Google Scholar
[6]
Y. Gao, S.P. Xu, B.S. Zhao, Stress and mixed boundary conditions for two-dimensional dodecagonal quasicrystal plates, Pramana-Journal of Physics, 68 (2007) 803-817.
DOI: 10.1007/s12043-007-0079-4
Google Scholar
[7]
B.S. Zhao, Y. Gao, Y.T. Zhao, Boundary conditions for axisymmetric circular cylinder in one-dimensional hexagonal quasicrystals, Archive of Applied Mechanics, 82 (2011) 605-614.
DOI: 10.1007/s00419-011-0576-2
Google Scholar
[8]
H. Fan, G.E.O. Widera, On the Use of Variational Principles to Derive Beam Boundary Conditions, Journal of Applied Mechanics, 61 (1994) 470-471.
DOI: 10.1115/1.2901469
Google Scholar
[9]
T. Murmu, S. Adhikari, Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems, European Journal of Mechanics - A/Solids, 34 (2012) 52-62.
DOI: 10.1016/j.euromechsol.2011.11.010
Google Scholar
[10]
A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, (2002).
Google Scholar
[11]
C.W. Lim, On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection, Applied Mathematics and Mechanics, 31 (2010) 37-54.
DOI: 10.1007/s10483-010-0105-7
Google Scholar
[12]
X.L. Gao, Alternative Derivation of Marguerre's Displacement Solution in Plane Isotropic Elasticity, Journal of Applied Mechanics, 67 (2000) 419-421.
DOI: 10.1115/1.1303801
Google Scholar
[13]
F.Y.M. Wan, Outer solution for elastic torsion by the method of boundary layer residual states, Zeitschrift für Angewandte Mathematik und Physik ZAMP, 51 (2000) 509-529.
DOI: 10.1007/s000330050014
Google Scholar
[14]
N. Buannic, P. Cartraud, Higher-order effective modeling of periodic heterogeneous beams. II. Derivation of the proper boundary conditions for the interior asymptotic solution, International Journal of Solids and Structures, 38 (2001) 7163-7180.
DOI: 10.1016/s0020-7683(00)00423-6
Google Scholar
[15]
Y. Gao, S.P. Xu, B.S. Zhao, Boundary conditions for elastic beam bending, Comptes Rendus Mécanique, 335 (2007) 1-6.
DOI: 10.1016/j.crme.2006.11.001
Google Scholar
[16]
Y. Gao, Decay conditions for 1D quasicrystal beams, IMA Journal of Applied Mathematics, 76 (2010) 599-609.
DOI: 10.1093/imamat/hxq046
Google Scholar
[17]
C.W. Lim, C.M. Wang, Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams, Journal of Applied Physics, 101 (2007) 054312.
DOI: 10.1063/1.2435878
Google Scholar
[18]
H. Fan, G.E.O. Widera, On the Proper Boundary Conditions for a Beam, Journal of Applied Mechanics, 59 (1992) 915-922.
DOI: 10.1115/1.2894061
Google Scholar