Study of the Parallel Hybrid Electric Vehicle Drive Train Fuzzy Logic Control Strategy

Article Preview

Abstract:

Vehicle power train plays an important role to develop the energy efficient and reduce fuel consumption.In this paper,the drive train fuzzy controller structure and the fuzzy logic control strategies of parallel hybrid vehicles is presented. Simulation results illustrate the potential of the proposed controller and control strategy in terms of fuel economy and in keeping the deviations of SOC at a low level.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

413-417

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jorge O. Estima, Member, IEEE, and Antonio J. Marques Cardoso, Senior Member, Efficiency Analysis of Drive Train Topologies Applied to Electric/Hybrid Vehicles, IEEE Transactions on vehicular technology, VOL. 61, NO. 3, pp.1021-1031,March (2012).

DOI: 10.1109/tvt.2012.2186993

Google Scholar

[2] A. Y. Saber and G. K. Venayagamoorthy, Plug-in vehicles and renewable energy sources for cost and emission reductions, IEEE Trans. Ind. Electron., vol. 58, no. 4, p.1229–1238, Apr. (2011).

DOI: 10.1109/tie.2010.2047828

Google Scholar

[3] C. C. Chan, A. Bouscayrol, and K. Chen, Electric, hybrid, and fuel-cell vehicles: Architectures and modeling, IEEE Trans. Veh. Technol., vol. 59, no. 2, p.589–598, Feb. (2010).

DOI: 10.1109/tvt.2009.2033605

Google Scholar

[4] Z. Amjadi and S. S. Williamson, A novel control technique for a switched-capacitor-converter-based hybrid electric vehicle energy storage system, IEEE Trans. Ind. Electron., vol. 57, no. 3, p.926–934, Mar. (2010).

DOI: 10.1109/tie.2009.2032196

Google Scholar

[5] K. I. Laskaris and A. G. Kladas, Internal permanent-magnet motor design for electric vehicle drive, IEEE Trans. Ind. Electron., vol. 57, no. 1, p.138–145, Jan. (2010).

DOI: 10.1109/tie.2009.2033086

Google Scholar

[6] C. Liu, K. T. Chau, and J. Z. Jiang, A permanent-magnet hybrid brushless integrated starter–generator for hybrid electric vehicles, IEEE Trans. Ind. Electron., vol. 57, no. 12, p.4055–4064, Dec. (2010).

DOI: 10.1109/tie.2010.2044128

Google Scholar

[7] M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy, IEEE Trans. Ind. Electron., vol. 57, no. 2, p.587–597, Feb. (2010).

DOI: 10.1109/tie.2009.2025283

Google Scholar

[8] Z. Amjadi and S. S. Williamson, Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems, IEEE Trans. Ind. Electron., vol. 57, no. 2, p.608–616, Feb. (2010).

DOI: 10.1109/tie.2009.2032195

Google Scholar

[9] T. Azib, O. Bethoux, G. Remy, C. Marchand, and E. Berthelot, An innovative control strategy of a single converter for hybrid fuel cell/supercapacitor power source, IEEE Trans. Ind. Electron., vol. 57, no. 12, p.4024–4031, Dec. (2010).

DOI: 10.1109/tie.2010.2044123

Google Scholar

[10] A. S. Samosir and A. H. M. Yatim, Implementation of dynamic evolution control of bidirectional DC–DC converter for interfacing ultracapacitor energy storage to fuel-cell system, IEEE Trans. Ind. Electron., vol. 57, no. 10, p.3468–3473, Oct. (2010).

DOI: 10.1109/tie.2009.2039458

Google Scholar