Effect of Pulsed Electric Fields on Interface Properties of Phospholipids Dispersion

Article Preview

Abstract:

Effects of pulsed electric fields (PEF) treatment on interface properties of phospholipids dispersion were studied. Results showed that the conductivity of solutions with different concentration after PEF treatment increased while surface tension value decreased with increasing electric field strength. The absolute value of zeta potential firstly increased when the field intensity was within 0~20 kV/cm, and then decreased if the field intensity increased further. It can be inferred that the torque of phospholipids molecule may have changed and phospholipids molecule have rearranged after PEF treatment. Moreover, as a resemblance to biological membrane structure, the phospholipid molecules of cell membrane may generate micropores after rearrangement, which result in the cell electroporation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-177

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.Y. Ohannes, K.H. Pystynen, M.L. Riekkola: Anal Chim Acta. Vol. 560 (2006),p.50.

Google Scholar

[2] Y.H. Liu, L. Hu, W.B. Wang: Sci Technol Rev. Vol. 28(2010), 48.

Google Scholar

[3] G. Hui, Y. Zhao, W. Zhang: Spectroscopy and Spectral Anal. Vol. 30(2010), p.2393.

Google Scholar

[4] X. M Li, B. Zhao, D.Q. Zhao: Thin Solid Films, Vol. 284-285 (1996) , p.762.

Google Scholar

[5] M.K. Shih, M.L. Hu: J. Inorganic Biochem. Vol. 77 (1999), p.22.

Google Scholar

[6] N. Wang, W. Wang, X.R. Zhu: J. Radiate Res. Radiate Process, Vol. 25(2007), p.115.

Google Scholar

[7] W.W. Sulkowski, D. Pentak, K. Nowak: J. Molecular Structure. Vol. 744-747 (2005), p.737.

Google Scholar

[8] G.R. Zu, F.D. Kong, Y. Liu: High Voltage Eng. Vol. 30(2004), p.47.

Google Scholar

[9] B. Zhang, X.A. Zeng, D.W. Sun: Food Bioprocess Technol. 2012, DOI 10. 1007/s 11947- 012- 0788-7.

Google Scholar

[10] Y.Y. Liu, X. A. Zeng, Z.P. Deng: European Food Res. & Technol. Vol. 233(2011), p.841.

Google Scholar

[11] Z. Han, X.A. Zeng, N. Fu: Carbohydrate Polymers, Vol. 89(2012), p.1012.

Google Scholar

[12] Z.R. Lin, X.A. Zeng, S.J. Yu: Food. Bioprocess Technol. 2012, DOI 10. 1007/ s11947- 011- 0678-4.

Google Scholar

[13] Z. Han,Q. Yu, X.A. Zeng: Inter J. Food Eng. Vol. 8(2012) DOI 10. 1515/1556-3758. 2375.

Google Scholar

[14] V.M. Humberto, U.R. Pothakamury, F.J. Chang: Food Res. Inter. 29 (1996), p.117.

Google Scholar

[15] M.M. Mady, M. M. Darwish: J Advanced Res. Vol. 1 (2010), p.187.

Google Scholar

[16] T. Nakaya, Y.J. Li: Progress Polymer Sci. Vol. 24(1999), p.143.

Google Scholar

[17] G. Cevc , H. Richardsen: Advanced Drug Delivery Rev. Vol. 38(1999), p.207.

Google Scholar

[18] Y.H. Liu, H.U. Lin, X.U. Feng: Chinese J Medical Physics, Vol. 25(2008), p.916.

Google Scholar

[19] X. Jia X.A. Zeng: Medical Mat. Eng. Applied Mechanics Mat. Vol. 140(2012), p.329.

Google Scholar

[20] Vlahovska P.M., Gracià R. S., Aranda-Espinoza S: Biophysical J. Vol. 12(2009), p.4789.

Google Scholar