Review on Biomechanical Simulation, Measurement and Control of Orthodontic Force

Article Preview

Abstract:

The forces and moments supplied by braces determine the movement of tooth in orthodontic treatment, so clearly quantifying the force value is very important to formulate precise treatment plan. In recent decades, scholars have presented many articles about biomechanical research on orthodontic force. Based on investigations of these papers, techniques on orthodontic force stimulation including oral model (bone, PDL and teeth included) reconstruction and constitute model construction, methods in orthodontic force measurement including physical oral model fabrication and device architectures, and techniques on orthodontic force control such as the use of shape memory alloy and shape memory polymer as the wire material, are reviewed. At the end, the conclusions and future works are given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

623-629

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.N. Natali, Dental Biomechanics, Taylor & Francis, London and New York, (2003).

Google Scholar

[2] Andrews LF, The six keys to normal occlusion, Am. J. Orthod. 62(1972) 296-309.

Google Scholar

[3] Information on http: /www. byrneorthodontics. com/orthodontist-faqs. asp.

Google Scholar

[4] H.M. Badawi, R.W. Toogood, J.P.R. Carey, G. Heo and P.W. Major, Three-dimensional orthodontic force measurements, Am. J. Orthod. Dentofacial Orthop. 136(2009) 518-528.

DOI: 10.1016/j.ajodo.2009.02.025

Google Scholar

[5] M. Hasegawa, T. Adachi, M. Hojo and T. Takano-Yamamoto, Computer simulation of orthodontic tooth movement using FE analysis, Interface oral health science, 2009, Springer, session 1, pp.143-144.

DOI: 10.1007/978-4-431-99644-6_26

Google Scholar

[6] H.H. Ammar, P. Ngan, R.J. Crout, V.H. Mucino, and O.M. Mukdadi, Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop. 139(2011) e59-e71.

DOI: 10.1016/j.ajodo.2010.09.020

Google Scholar

[7] U. Mandel, A biomechanical study of the human periodontal ligament, J. Biomech. 19(1986), 637-645.

Google Scholar

[8] N. Yoshida, Y. Koga, C.L. Peng, E. Tanaka and K. Kobayashi, In vivo measurement of the elastic modulus of the human periodontal ligament, Med. Eng. Phys. 23(2001) 567-572.

DOI: 10.1016/s1350-4533(01)00073-x

Google Scholar

[9] L. Qian, M. Todo, Y. Morita, Y. Matsushita and K. Koyano, Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament, Dent. Mater. 25(2009) 1285-1292.

DOI: 10.1016/j.dental.2009.03.014

Google Scholar

[10] T.S. Fill, R.W. Toogood, P.W. Major and J.P. Carey, Analytically determined mechanical properties of models for the periodontal ligament: Critical review of literature, J. Biomech. 45(2012) 9-16.

DOI: 10.1016/j.jbiomech.2011.09.020

Google Scholar

[11] J. Chen, I. Bulucea, T.R. Katona and S. Ofner, Complete orthodontic load systems on teeth in a continuous full archwire: the role of triangular loop position, Am. J. Orthod. Dentofacial Orthop. 132(2007) 142-148.

DOI: 10.1016/j.ajodo.2006.10.016

Google Scholar

[12] J. Chen, S.C. Isikbay and E.J. Brizendine, Quantification of three-dimensional orthodontic force system of T-loop archwires, Angle Orthod, 80(2010) 566-570.

DOI: 10.2319/082509-484.1

Google Scholar

[13] M. Gollner, A. Holst, C. Berthold, J. Schmitt, M. Wichmann and S. Holst, Noncontact intraoral measurement of force-related tooth mobility, Clin. Oral Investig. 14(2010) 551-557.

DOI: 10.1007/s00784-009-0344-7

Google Scholar

[14] R. Bibb, J. Winder, A review of the issues surrounding three-dimensional computed tomography for medical modeling using rapid prototyping techniques, Radiography, 16(2010) 78-83.

DOI: 10.1016/j.radi.2009.10.005

Google Scholar

[15] Y.C. Jung, J.W. Cho, Application of shape memory polyurethane in orthodontic, J. Mater. Sci. Mater. Med., 21(2010) 2881-2886.

DOI: 10.1007/s10856-008-3538-7

Google Scholar

[16] W.A. Brantley, M. Iijima and T.H. Grentzer, Temperature-modulated DSC study of phase transformations in nickel-titanium orthodontic wires, Thermochim. Acta, 392-393(2002) 329-337.

DOI: 10.1016/s0040-6031(02)00119-3

Google Scholar

[17] L. Sun, W.M. Huang, Z. Ding, Y. Zhao, et al. Stimulus-responsive shape memory materials: a review, Mater. Design, 33(2012) 577-640.

DOI: 10.1016/j.matdes.2011.04.065

Google Scholar

[18] Information on www. suresmile. com.

Google Scholar

[19] B. Grosgogeat, C. Pernier, N. Schiff, V. Comte and A. Huet, Biocompatibility and resistance to corrosion of orthodontic wires, Orthod. Fr, 74(2003) 115-121.

DOI: 10.1051/orthodfr/200374115

Google Scholar

[20] A. Ziebowicz, W. Walke, A. Barucha-Kepka and M. Kiel, Corrosion behavior of metallic biomaterials used as orthodontic wires, J. Achievements Mater. Manuf. Eng. 27(2008) 151-154.

Google Scholar

[21] P. Ghosh P, A.R. Srinivasa, A two-network thermo mechanical model of a shape memory polymer, Int. J. Eng. Sci. 49(2011) 823-838.

Google Scholar

[22] J.F. McCabe, Z. Yan, O.T. Al Naimi, G. Mahmoud and S.L. Rolland, Smart materials in dentistry-future prospects, Dent. Mater. J. 28(2009) 37-43.

DOI: 10.4012/dmj.28.37

Google Scholar

[23] A. Lendlein, M. Behl, B. Hiebl and C. Wischke, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices, 7(2010) 357-379.

DOI: 10.1586/erd.10.8

Google Scholar

[24] A. Nakasima, J.R. Hu, M. Lchinose and H. Shimada, Potential application of shape memory plastic as elastic material in clinical orthodontics, Eur. J. Orthod. 13(1991) 179-186.

DOI: 10.1093/ejo/13.3.179

Google Scholar

[25] W.S. IV, P. Singhal, T.S. Wilson and D.J. Maitland, Biomedical applications of thermally activated shape memory polymers, J. Mater. Chem. 20(2010) 3356-3366.

DOI: 10.1039/b923717h

Google Scholar

[26] B.C. Chun, M.H. Chong and Y.C. Chung, Effect of glycerol cross-linking and hard segment content on the shape memory property of polyurethane block copolymer, J. Mater. Sci. 42(2007) 6524-6531.

DOI: 10.1007/s10853-007-1568-z

Google Scholar