[1]
A.N. Natali, Dental Biomechanics, Taylor & Francis, London and New York, (2003).
Google Scholar
[2]
Andrews LF, The six keys to normal occlusion, Am. J. Orthod. 62(1972) 296-309.
Google Scholar
[3]
Information on http: /www. byrneorthodontics. com/orthodontist-faqs. asp.
Google Scholar
[4]
H.M. Badawi, R.W. Toogood, J.P.R. Carey, G. Heo and P.W. Major, Three-dimensional orthodontic force measurements, Am. J. Orthod. Dentofacial Orthop. 136(2009) 518-528.
DOI: 10.1016/j.ajodo.2009.02.025
Google Scholar
[5]
M. Hasegawa, T. Adachi, M. Hojo and T. Takano-Yamamoto, Computer simulation of orthodontic tooth movement using FE analysis, Interface oral health science, 2009, Springer, session 1, pp.143-144.
DOI: 10.1007/978-4-431-99644-6_26
Google Scholar
[6]
H.H. Ammar, P. Ngan, R.J. Crout, V.H. Mucino, and O.M. Mukdadi, Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop. 139(2011) e59-e71.
DOI: 10.1016/j.ajodo.2010.09.020
Google Scholar
[7]
U. Mandel, A biomechanical study of the human periodontal ligament, J. Biomech. 19(1986), 637-645.
Google Scholar
[8]
N. Yoshida, Y. Koga, C.L. Peng, E. Tanaka and K. Kobayashi, In vivo measurement of the elastic modulus of the human periodontal ligament, Med. Eng. Phys. 23(2001) 567-572.
DOI: 10.1016/s1350-4533(01)00073-x
Google Scholar
[9]
L. Qian, M. Todo, Y. Morita, Y. Matsushita and K. Koyano, Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament, Dent. Mater. 25(2009) 1285-1292.
DOI: 10.1016/j.dental.2009.03.014
Google Scholar
[10]
T.S. Fill, R.W. Toogood, P.W. Major and J.P. Carey, Analytically determined mechanical properties of models for the periodontal ligament: Critical review of literature, J. Biomech. 45(2012) 9-16.
DOI: 10.1016/j.jbiomech.2011.09.020
Google Scholar
[11]
J. Chen, I. Bulucea, T.R. Katona and S. Ofner, Complete orthodontic load systems on teeth in a continuous full archwire: the role of triangular loop position, Am. J. Orthod. Dentofacial Orthop. 132(2007) 142-148.
DOI: 10.1016/j.ajodo.2006.10.016
Google Scholar
[12]
J. Chen, S.C. Isikbay and E.J. Brizendine, Quantification of three-dimensional orthodontic force system of T-loop archwires, Angle Orthod, 80(2010) 566-570.
DOI: 10.2319/082509-484.1
Google Scholar
[13]
M. Gollner, A. Holst, C. Berthold, J. Schmitt, M. Wichmann and S. Holst, Noncontact intraoral measurement of force-related tooth mobility, Clin. Oral Investig. 14(2010) 551-557.
DOI: 10.1007/s00784-009-0344-7
Google Scholar
[14]
R. Bibb, J. Winder, A review of the issues surrounding three-dimensional computed tomography for medical modeling using rapid prototyping techniques, Radiography, 16(2010) 78-83.
DOI: 10.1016/j.radi.2009.10.005
Google Scholar
[15]
Y.C. Jung, J.W. Cho, Application of shape memory polyurethane in orthodontic, J. Mater. Sci. Mater. Med., 21(2010) 2881-2886.
DOI: 10.1007/s10856-008-3538-7
Google Scholar
[16]
W.A. Brantley, M. Iijima and T.H. Grentzer, Temperature-modulated DSC study of phase transformations in nickel-titanium orthodontic wires, Thermochim. Acta, 392-393(2002) 329-337.
DOI: 10.1016/s0040-6031(02)00119-3
Google Scholar
[17]
L. Sun, W.M. Huang, Z. Ding, Y. Zhao, et al. Stimulus-responsive shape memory materials: a review, Mater. Design, 33(2012) 577-640.
DOI: 10.1016/j.matdes.2011.04.065
Google Scholar
[18]
Information on www. suresmile. com.
Google Scholar
[19]
B. Grosgogeat, C. Pernier, N. Schiff, V. Comte and A. Huet, Biocompatibility and resistance to corrosion of orthodontic wires, Orthod. Fr, 74(2003) 115-121.
DOI: 10.1051/orthodfr/200374115
Google Scholar
[20]
A. Ziebowicz, W. Walke, A. Barucha-Kepka and M. Kiel, Corrosion behavior of metallic biomaterials used as orthodontic wires, J. Achievements Mater. Manuf. Eng. 27(2008) 151-154.
Google Scholar
[21]
P. Ghosh P, A.R. Srinivasa, A two-network thermo mechanical model of a shape memory polymer, Int. J. Eng. Sci. 49(2011) 823-838.
Google Scholar
[22]
J.F. McCabe, Z. Yan, O.T. Al Naimi, G. Mahmoud and S.L. Rolland, Smart materials in dentistry-future prospects, Dent. Mater. J. 28(2009) 37-43.
DOI: 10.4012/dmj.28.37
Google Scholar
[23]
A. Lendlein, M. Behl, B. Hiebl and C. Wischke, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices, 7(2010) 357-379.
DOI: 10.1586/erd.10.8
Google Scholar
[24]
A. Nakasima, J.R. Hu, M. Lchinose and H. Shimada, Potential application of shape memory plastic as elastic material in clinical orthodontics, Eur. J. Orthod. 13(1991) 179-186.
DOI: 10.1093/ejo/13.3.179
Google Scholar
[25]
W.S. IV, P. Singhal, T.S. Wilson and D.J. Maitland, Biomedical applications of thermally activated shape memory polymers, J. Mater. Chem. 20(2010) 3356-3366.
DOI: 10.1039/b923717h
Google Scholar
[26]
B.C. Chun, M.H. Chong and Y.C. Chung, Effect of glycerol cross-linking and hard segment content on the shape memory property of polyurethane block copolymer, J. Mater. Sci. 42(2007) 6524-6531.
DOI: 10.1007/s10853-007-1568-z
Google Scholar