An Aptamer-Modified Nanogold Method for the Determination of Trace Ag+ Using Resonance Rayleigh Scattering as Detection Technique

Article Preview

Abstract:

Aptamer was modified the gold nanoparticle (AuNP) to form stable aptamer-AuNP probe that was not gathered in the pH 7.2 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) buffer solution and in the presence of NaCl. The Ag+ react with the aptamer-AuNP probe to fold a hairpin structure complex of Ag+-aptamer and release AuNPs that were aggregated to large particles, which lead to resonance Rayleigh scattering (RRS) peak at 596 nm enhancement. The enhanced value ΔI596nm is linear to Ag + concentration in the range of 6.7×10-8-1.33×10-6 mol/L. Thus, a new RRS methods were proposed for detection of Ag+, with high sensitivity, good selectivity and simplicity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

618-622

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Eisler. Silver Hazards to Fish, Wildlife and Invertebrates: A Sypnotic Review, Patuxent Wildlife Research Center U.S. National Biological Service, (1996).

DOI: 10.5962/bhl.title.11339

Google Scholar

[2] E. Meian (Ed. ), Metals and Their Compounds in the Environment, VCH, New York, (1991).

Google Scholar

[3] K. Wygladacz, A. Radu, C. Xu, Y. Qin, and E. Bakker. Anal Chem Vol. 77 (2005), p.4706.

Google Scholar

[4] C. Z. Lai, M. A. Fierke, R. C. Costa, J. A. Gladysz, A. Stein, and P. Buhlmann. Anal Chem Vol. 82 (2010), p.7634.

Google Scholar

[5] J. L. Manzoori, H. Abdolmohammad-Zadeh, and M. Amjadi. J Haz Mat Vol. 144 (2007), p.458.

Google Scholar

[6] P. B. Barrera, J. M. Pineiro,A. M. Pineiro, A. Bermejo-Barrera. Talanta Vol. 43 (1996), p.35.

Google Scholar

[7] M. F. Suarez, A. Mills, R. G. Egdell, R. G. Compton. Electroanal Vol. 12 (2000), p.413.

Google Scholar

[8] Y. H. Li, H. Q. Xie, F. Q. Zhou. Talanta Vol. 67 (2005), p.28.

Google Scholar

[9] R. P. Singh, E. R. Pambid. Analyst Vol. 115 (1990), p.301.

Google Scholar

[10] T. B. Wang, X. J. Jia, J. Wu. J Pharm Biom Anal Vol. 33 (2003), p.639.

Google Scholar

[11] M. Krachler, C. Mohl, H. Emons, W. Shotyk. Spectrochim Acta B Vol. 57 (2002), p.1277.

Google Scholar

[12] R. K. Katarina, T. Takayanagi, M. Oshima, and S. Motomizu. Anal Chim Acta Vol. 558 (2006), p.246.

Google Scholar

[13] H. Zheng, M. Yan, X. X. Fan, D. Sun, S.Y. Yang, L.J. Yang, J. D. Li, and Y. B. Jiang. Chem Commun Vol. 48 (2012), p.2243.

Google Scholar

[14] Y. Y. Bao, Q. B. Li, B. Liu, F. F. Du, J. Tian, H. Wang, Y. X Wang, and R. Bai. Chem Commun Vol. 48 (2012), p.118.

Google Scholar

[15] Y. H. Lin, and W. L. Tseng. Chem Commun Vol. 45 (2009), p.6619.

Google Scholar

[16] J. M. Kim, C. R. Lohani, L. N. Neupane, Y. Choi, K. H. Lee. Chem Commun Vol. 48 (2012), p.3012.

Google Scholar

[17] S. Liu, J. Q. Tian, L. Wang, and X. P. Sun. Sens Actuat B Vol. 165 (2012), p.44.

Google Scholar

[18] C. Y. Lin, C. J. Yu, Y. H. Lin, and W. L. Tseng. Anal Chem Vol. 82 (2010), p.6830.

Google Scholar

[19] C. C. Chang, S. Lin, S. C. Wei, C. S. Yu, C. W. Lin. Anal Bioanal Chem Vol. 402 (2012), p.2827.

Google Scholar

[20] Y. Hur, K. Ock, K. Kim, S. Jin, Y. Gal, J. Kim, S. Kim, and K. Koh. Anal Chim Acta Vol. 460 (2002), p.133.

Google Scholar

[21] Z.L. Jiang, Y.Y. Fan, A.H. Liang, G.Q. Wen, Q.Y. Liu, and T.S. Li. Plasmonics Vol. 5 (2010), p.375.

Google Scholar

[22] S.W. Huang, J.S. Li, A.H. Liang, and Z.L. Jiang. Acta Chim Sin Vol. 69 (2011), p.183.

Google Scholar

[23] C.Y. Lu, Z.H. Han, and S.Y. Yang. Chin Chem Lett Vol. 16 (2005), p.1063.

Google Scholar